Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 193: 115196, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421917

RESUMO

As oil and gas infrastructure comes to the end of its working life, a decommissioning decision must be made: should the infrastructure be abandoned in situ, repurposed, partially removed, or fully removed? Environmental contaminants around oil and gas infrastructure could influence these decisions because contaminants in sediments could degrade the value of the infrastructure as habitat, enter the seafood supply if the area is re-opened for commercial and/or recreational fishing, or be made biologically available as sediment is resuspended when the structures are moved. An initial risk hypothesis, however, may postulate that these concerns are only relevant if contaminant concentrations are above screening values that predict the possibility of environmental harm or contaminant bioaccumulation. To determine whether a substantive contaminants-based risk assessment is needed for infrastructure in the Gippsland Basin (South-eastern Australia), we measured the concentration of metals and polycyclic aromatic hydrocarbons (PAHs) in benthic sediments collected around eight platforms earmarked for decommissioning. The measurements were compared to preset screening values and to background contaminant concentrations in reference sites. Lead (Pb), zinc (Zn), PAHs and other contaminants were occasionally measured at concentrations that exceeded reference values, most often within 150 m of the platforms. The exceedance of a few screening values by contaminants at some platforms indicates that these platforms require further analysis to determine the contaminant risks associated with any decommissioning option.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/análise , Austrália , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 41(10): 2580-2594, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856873

RESUMO

Following an oil spill, accurate assessments of the ecological risks of exposure to compounds within petroleum are required, as is knowledge regarding how those risks may change with the use of chemical dispersants. Laboratory toxicity tests are frequently used to assess these risks, but differences in the methods for preparation of oil-in-water solutions may confound interpretation, as may differences in exposure time to those solutions. In the present study, we used recently developed modifications of standardized ecotoxicity tests with copepods (Acartia sinjiensis), sea urchins (Heliocidaris tuberculata), and fish embryos (Seriola lalandi) to assess their response to crude oil solutions and assessed whether the oil-in-water preparation method changed the results. We created a water-accommodated fraction, a chemically enhanced water-accommodated fraction, and a high-energy water-accommodated fraction (HEWAF) using standard approaches using two different dispersants, Corexit 9500 and Slickgone NS. We found that toxicity was best related to total polycyclic aromatic hydrocarbon (TPAH) concentrations in solution, regardless of the preparation method used, and that the HEWAF was the most toxic because it dispersed the highest quantity of oil into solution. The TPAH composition in water did not vary appreciably with different preparation methods. For copepods and sea urchins, we also found that at least some of the toxic response could be attributed to the chemical oil dispersant. We did not observe the characteristic cardiac deformities that have been previously reported in fish embryos, most likely due to the use of unweathered oil, and, as a consequence, the high proportion of naphthalenes relative to cardiotoxic polycyclic aromatic hydrocarbon in the overall composition. The present study highlights the need to characterize both the TPAH composition and concentration in test solutions when assessing oil toxicity. Environ Toxicol Chem 2022;41:2580-2594. © 2022 SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Naftalenos , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Ouriços-do-Mar , Água/química , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 40(9): 2587-2600, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033678

RESUMO

Petroleum hydrocarbons can be discharged into the marine environment during offshore oil and gas production or as a result of oil spills, with potential impacts on marine organisms. Ecotoxicological assay durations (typically 24-96 h) used to characterize risks to exposed organisms may not always reflect realistic environmental exposure durations in a high-energy offshore environment where hydrocarbons are mixed and diluted rapidly in the water column. To investigate this, we adapted 3 sensitive toxicity tests to incorporate a short-term pulse exposure to 3 petroleum-based products: a produced water, the water-accommodated fraction (WAF) of a condensate, and a crude oil WAF. We measured 48-h mobility of the copepod Acartia sinjiensis, 72-h larval development of the sea urchin Heliocidaris tuberculata, and 48-h embryo survival and deformities of yellowtail kingfish Seriola lalandi, after exposure to a dilution series of each of the 3 products for 2, 4 to 12, and 24 h and for the standard duration of each toxicity test (continuous exposure). Effects on copepod survival and sea urchin larval development were significantly reduced in short-term exposures to produced water and WAFs compared to continuous exposures. Fish embryos, however, showed an increased frequency of deformities at elevated concentrations regardless of exposure duration, although there was a trend toward increased severity of deformities with continuous exposure. The results demonstrate how exposure duration alters toxic response and how incorporating relevant exposure duration to contaminants into toxicity testing may aid interpretation of more realistic effects (and hence an additional line of evidence in risk assessment) in the receiving environment. Environ Toxicol Chem 2021;40:2587-2600. © 2021 CSIRO. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Peixes , Hidrocarbonetos , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar , Testes de Toxicidade , Água/química , Poluentes Químicos da Água/análise
4.
Sci Data ; 7(1): 297, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901022

RESUMO

Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.


Assuntos
Biomassa , Zooplâncton , Animais , Austrália , Oceano Índico , Oceano Pacífico
5.
Aquat Toxicol ; 204: 27-45, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30173120

RESUMO

Biomarkers are frequently used to determine the exposure of fish to petroleum hydrocarbons following an oil spill. These biomarkers must be chosen carefully if they are to be used to determine sublethal toxic impacts as well as oil exposure. Many commonly used biomarkers relate to the metabolism of high molecular weight, typically pyrogenic, polycyclic aromatic hydrocarbons (PAHs), which are not abundant in unweathered crude oil. The goal of this study was to compare the efficacy of different biomarkers, including histological examination and transcriptomic profiling, in showing exposure to oil and the potential for sublethal toxic impacts. To achieve these goals, subadults/adults of the spotted dragonet (Repomucenus calcaratus) were exposed to a representative light, unweathered Australian oil for 96 h, so that the physiological changes that occur with exposure could be documented. Fish were then transferred to clean sediment for 90 h to quantify recovery. Biomarker changes, including PAH metabolites, 7-ethoxyresorufin O-deethylase (EROD), and histopathology, are presented in this work. In addition, a de novo transcriptome for the spotted dragonet was assembled, and differential transcript abundance was determined for the gill and liver of petroleum-exposed fish relative to a control. Increased levels of some biliary phenanthrene metabolites were seen throughout the exposure period. EROD levels showed modest, but not significant, increases. Transcriptomic differences were noted in the abundances of transcripts with a role in inflammation, primary metabolism and cardiac function. The patterns of transcript abundance in the gill and the liver changed in a manner that reflected exposure and recovery. The histology showed elevated prevalence of lesions, most notably vacuolization in liver and heart tissue, multi-organ necrosis, and lamellar epithelial lifting and telangiectasia in the gill. These findings suggest that short-term exposures to low molecular weight PAHs could elicit changes in the health of fish that are well predicted by the transcriptome. Furthermore, when light oil is released into the environment, exposure and subsequent risk would be better estimated using phenanthrene metabolite levels rather than EROD. This study also adds to the weight of evidence that exposure to low molecular weight PAHs may cause cardiac problems in fish. Further study is needed to determine the impact of these changes on reproductive capacity, long-term survival, and other population specific parameters.


Assuntos
Monitoramento Ambiental/métodos , Perciformes/fisiologia , Petróleo/toxicidade , Animais , Austrália , Bile/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ontologia Genética , Sedimentos Geológicos/química , Metaboloma , Anotação de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Perciformes/genética , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Software , Poluentes Químicos da Água/toxicidade
6.
Environ Toxicol Chem ; 37(5): 1359-1366, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29323733

RESUMO

Some polycyclic aromatic hydrocarbons (PAHs), components of crude oil, are known to cause increased toxicity when organisms are co-exposed with ultraviolet radiation, resulting in photo-induced toxicity. The photodynamic characteristics of some PAHs are of particular concern to places like Australia with high ultraviolet radiation levels. The objective of the present study was to characterize the photo-induced toxicity of an Australian North West Shelf oil to early life stage yellowtail kingfish (Seriola lalandi) and black bream (Acanthopagrus butcheri). The fish were exposed to high-energy water accommodated fractions for 24 to 36 h. During the exposure, the fish were either co-exposed to full-intensity or filtered natural sunlight and then transferred to clean water. At 48 h, survival, cardiac effects, and spinal deformities were assessed. Yellowtail kingfish embryos co-exposed to oil and full-spectrum sunlight exhibited decreased hatching success and a higher incidence of cardiac arrhythmias, compared with filtered sunlight. A significant increase in the incidence of pericardial edema occurred in black bream embryos co-exposed to full-spectrum sunlight. These results highlight the need for more studies investigating the effects of PAHs and photo-induced toxicity under environmental conditions relevant to Australia. Environ Toxicol Chem 2018;37:1359-1366. © 2018 SETAC.


Assuntos
Exposição Ambiental/análise , Peixes/fisiologia , Petróleo/toxicidade , Raios Ultravioleta , Animais , Austrália , Edema/patologia , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
7.
Sci Rep ; 6: 22290, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924604

RESUMO

Box jellyfish cause human fatalities and have a life cycle and habit associated with shallow waters (<5 m) in mangrove creeks, coastal beaches, embayments. In north-western Australia, tow video and epibenthic sled surveys discovered large numbers (64 in a 1500 m tow or 0.05 m(-2)) of Chironex sp. very near to the benthos (<50 cm) at depths of 39-56 m. This is the first record of a population of box jellyfish closely associated with the benthos at such depths. Chironex were not widespread, occurring only in 2 of 33 tow videos and 3 of 41 epibenthic sleds spread over 2000 km(2). All Chironex filmed or captured were on low to medium relief reefs with rich filter feeder communities. None were on soft sediment habitat despite these habitats comprising 49% of all sites. The importance of the reef habitat to Chironex remains unclear. Being associated with filter feeder communities might represent a hazard, and other studies have shown C. fleckeri avoid habitats which represent a risk of entanglement of their tentacles. Most of our observations were made during the period of lowest tidal current flow in the morning. This may represent a period favourable for active hunting for prey close to the seabed.


Assuntos
Cnidários , Ecossistema , Animais , Humanos , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...