Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(8): 10149-10160, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617241

RESUMO

High-throughput roll-to-roll processes are desirable to scale up the manufacture of flexible thermoelectric generators. While vacuum deposition onto a heated dynamic substrate presents a considerable engineering challenge, viable postdeposition in-line annealing processes are considered as an alternative to improve the functional performance of as-deposited films. The effect of infrared and electron-beam irradiations of 1 µm thick bismuth telluride thin films, produced by a vacuum roll-to-roll process for use as thermoelectric materials, was examined. A static vacuum oven and pulsed high-energy electron beam were also studied as control groups. All annealing strategies increased the crystallite size and decreased the Te content. Only the static vacuum oven treatment was shown to significantly improve the film's crystallinity. After 1 h annealing, the power factor improved by 400% (from 2.8 to 14 × 10-4 W/mK2), which, to the knowledge of the authors, is the highest reported thermoelectric performance of postannealed or hot-deposited Bi-Te films. As for in-line annealing, infrared and electron-beam post treatments improved the power factor by 146% (from 2.8 to 6.9 × 10-4 W/mK2) and 64% (from 2.8 to 4.6 × 10-4 W/mK2), respectively.

2.
J Colloid Interface Sci ; 568: 273-281, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092556

RESUMO

HYPOTHESIS: Selective ozone treatment of Polydimethylsiloxane (PDMS) print-stamps may facilitate local de-wetting of Krytox®1506 oil; the resulting printed pattern can be used as a masking liquid during roll-to-roll vacuum-metallization, exemplified with Ag. This novel method may exploit high-throughput manufacture without chemical etchants or elevated temperatures for thin-film electronics. EXPERIMENTS: The mechanism for selective wetting arose from O3 treatment of PDMS through a shadow-mask to vary surface-energy due to formation of polar silanol (Si-OH) replacing surface methyl groups leading to contact angle reduction from 40°-9° for oil on PDMS. Oiled PDMS was (1) metalized itself and (2) used as a stamp to print onto polyethylene-terephthalate, consisting of oil pick-up/de-wetting/transfer-to-substrate/metallization. FINDINGS: Ag (520-568 nm) thick was deposited outside oiled regions, surpassing ~20 µm resolution of commercial printing. On metalized PDMS, minimum line widths were 2.6 µm (with 10 µm edge-grading from centrifugal oil spreading) or widths of 24 µm (no Ag grading) following spin-coating/roll-coating oil respectively. The progressive effect of thinning oil via five successive stamp-to-substrate impressions, produced line widths of 14 µm (with graded edge of 7.6 µm via spreading from stamp-substrate compression). Developments may reduce reliance on laser engraving/photocuring, and could enhance micro-contact printing through liquid dynamics vs. topographical relief structures.

3.
J Colloid Interface Sci ; 566: 271-283, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006822

RESUMO

Titanate structures have been widely investigated as biomedical component surfaces due to their bioactive, osteoinductive and antibacterial properties. However, these surfaces are limited to Ti and its alloys, due to the nature of the chemical conversion employed. The authors present a new method for generating nanoporous titanate structures on alternative biomaterial surfaces, such as other metals/alloys, ceramics and polymers, to produce bioactive and/or antibacterial properties in a simple yet effective way. Wet chemical (NaOH; 5 M; 60 °C; 24 h) conversion of DC magnetron sputtered Ti surfaces on 316L stainless steel were investigated to explore effects of microstructure on sodium titanate conversion. It was found that the more equiaxed thin films (B/300) generated the thickest titanate structures (ca. 1.6 µm), which disagreed with the proposed hypothesis of columnar structures allowing greater NaOH ingress. All film parameters tested ultimately generated titanate structures, as confirmed via EDX, SEM, XPS, XRD, FTIR and Raman analyses. Additionally, the more columnar structures (NB/NH & B/NH) had a greater quantity of Na (ca. 26 at.%) in the top portion of the films, as confirmed via XPS, however, on average the Na content was consistent across the films (ca. 5-9 at.%). Film adhesion for the more columnar structures (ca. 42 MPa), even on polished substrates, were close to that of the FDA requirement for plasma-sprayed HA coatings (ca. 50 MPa). This study demonstrates the potential of these surfaces to be applied onto a wide variety of material types, even polymeric materials, due to the lower processing temperatures utilised, with the vision to generate bioactive and/or antibacterial properties on a plethora of bioinert materials.


Assuntos
Nanopartículas/química , Óxidos/química , Titânio/química , Teste de Materiais , Tamanho da Partícula , Porosidade , Propriedades de Superfície
4.
Sci Rep ; 8(1): 14530, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266971

RESUMO

Here we show a new and effective methodology for rapid/controllable porosification of thin-film ceramics, which may be applied in medical devices/electronics and membrane nano-filtration. Dense hydroxyapatite applied to Ti6Al4V by plasma-assisted PVD was electron-beam irradiated to induce flash melting/boiling. Deposited coatings contained amorphous and nano-crystalline/stoichiometric hydroxyapatite (~35 nm). Irradiation (voltages 13-29 kV) led to ablation (up to 45% mass loss) and average/maximum pore areas from (0.07-1.66)/(0.69-92.53) µm2, mimicking the human cortical bone. Vitrification above 1150 °C formed (~62-30 nm) crystallites of α-Tri Calcium Phosphate. Unique porosification resulted from irradiation-induced sub-surface boiling and limited thermal conductivity of hydroxyapatite, causing material to expand/explode through the more quickly solidified top surface. Commercially applicable, roughened Ti6Al4V exacerbated the heating and boiling explosion phenomenon in certain regions, producing an array of pore sizes. Scaffold-like morphologies were generated by interconnection of micron/sub-micron porosity, showing great potential for facile generation of a biomimetic surface treatment for osseointegration.


Assuntos
Materiais Biomiméticos/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Durapatita/química , Ligas , Materiais Revestidos Biocompatíveis/química , Osso Cortical/química , Elétrons , Humanos , Osseointegração , Porosidade , Titânio/química
5.
J Mech Behav Biomed Mater ; 82: 371-382, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656232

RESUMO

The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P2O5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P2O5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm-3) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route.


Assuntos
Gálio/química , Vidro/química , Teste de Materiais , Fenômenos Mecânicos , Fosfatos/química , Próteses e Implantes
6.
ACS Appl Mater Interfaces ; 7(49): 27362-72, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26523618

RESUMO

Quinternary phosphate-based glasses of up to 2.67 µm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...