Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282077

RESUMO

Resolving chromatin remodeling-linked gene expression changes at cell type resolution is important for understanding disease states. We describe MAGICAL, a hierarchical Bayesian approach that leverages paired scRNA-seq and scATAC-seq data from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from infected subjects with bloodstream infection and from uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant- (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) infections. While differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished MRSA from MSSA.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472352

RESUMO

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and then bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were asked to enroll in an immune response sub-study. FluoroSpot interferon-gamma (IFN-{gamma}) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-{gamma} responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-{gamma} responses were significantly (p=0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic subjects; however, the difference was not statistically significant (p=0.06) for symptomatic subjects (N pool: 44.4%; M pool: 25.9%). In asymptomatic participants IFN-{gamma} responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but symptomatic participants, IFN-{gamma} responses were more frequent to the S pool (75.0%) than N pool (33.3%) and M pool (33.3%). The frequencies of IFN-{gamma} responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-{gamma} and IL2 responses to the N+M pool were significantly correlated with IFN-{gamma} and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-{gamma} and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428136

RESUMO

The mRNA-1273 vaccine was recently determined to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from interim Phase 3 results. Human studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibit more severe SARS-CoV-2 disease similar to hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and non-human primates, mRNA-1273- mediated immunity was non-sterilizing and coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high resolution analysis which is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a two-dose schedule and provides insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250535

RESUMO

BackgroundThe risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subsequent infection among seropositive young adults was studied prospectively. MethodsThe study population comprised 3,249 predominantly male, 18-20-year-old Marine recruits. Upon arrival at a Marine-supervised two-week quarantine, participants were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a 1:150 dilution or greater on receptor binding domain and full-length spike protein enzyme-linked immunosorbent (ELISA) assays. SARS-CoV-2 infection was assessed by PCR at initiation, middle and end of the quarantine. After appropriate exclusions, including participants with a positive PCR during quarantine, we performed three biweekly PCR tests in both seropositive and in seronegative groups once recruits left quarantine and entered basic training and baseline neutralizing antibody titers on all subsequently infected seropositive and selected seropositive uninfected participants. FindingsAmong 189 seropositive participants, 19 (10.1%) had at least one positive PCR test for SARS-CoV-2 during the six-week follow-up (1.1 cases per person-year). In contrast, 1,079 (48.0%) of the 2,247 seronegative participants tested positive (6.2 cases per person-year). The incidence rate ratio was 0.18 (95% CI 0.11-0.28, p<0.00001). Among seropositive recruits, infection was associated with lower baseline full-length spike protein IgG titers (p<0.0001). Compared with seronegative recruits, seropositive recruits had about 10-fold lower viral loads (ORF1ab gene, p<0.005), and trended towards shorter duration of PCR positivity (p=0.18) and more frequent asymptomatic infections (p=0.13). Among seropositive participants, baseline neutralizing titers were detected in 45 of 54 (83.3%) uninfected and in 6 of 19 (31.6%) infected participants during the 6 weeks of observation (ID50 difference p<.0001). InterpretationSeropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralization activity or immunity against subsequent infection. These findings may be relevant for optimization of mass vaccination strategies. FundingDefense Health Agency and Defense Advanced Research Projects Agency

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...