Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(5-1): 054401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559513

RESUMO

Evolutionary transitions among ecological interactions are widely known, although their detailed dynamics remain absent for most population models. Adaptive dynamics has been used to illustrate how the parameters of population models might shift through evolution, but within an ecological regime. Here we use adaptive dynamics combined with a generalized logistic model of population dynamics to show that transitions of ecological interactions might appear as a consequence of evolution. To this purpose, we introduce a two-microbial toy model in which population parameters are determined by a bookkeeping of resources taken from (and excreted to) the environment, as well as from the byproducts of the other species. Despite its simplicity, this model exhibits all kinds of potential ecological transitions, some of which resemble those found in nature. Overall, the model shows a clear trend toward the emergence of mutualism.


Assuntos
Evolução Biológica , Simbiose , Prevalência , Dinâmica Populacional , Modelos Biológicos
2.
Ecol Evol ; 10(21): 11869-11874, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209256

RESUMO

We present comments on an article published by Villacañas de Castro and Hoffmeister (Ecology and Evolution, 10, 4220; 2020). The authors studied a tritrophic system composed of a plant, its pollinating seed predator, and a parasitoid of the latter. Their concern was whether the parasitoid modifies the interaction between the plant and its pollinator-herbivore along the mutualism-antagonism gradient, but they reduced their question to how the parasitoid impacts plant fitness. After showing that the parasitoid increases seed output of the plant by decreasing the amount of seeds consumed by the pollinating seed predator, they tested whether seed output is a good proxy for plant fitness. They argue that it is not by showing that the increased seed density has a negative impact on survival probability and flower production, likely due to plant intraspecific competition. The work presented shows careful experimentation and interesting results, but we do not share some of their conclusions. Most importantly, we believe that the net effect of the parasitoid on the plant-herbivore interaction cannot be adequately investigated by focusing on individual plant fitness. Thus, we first suggest considering the number of surviving plants up to adulthood as a proxy for population performance to address this question. Using this proxy, we show that the increase in seed output due to the parasitoid is beneficial to the plant population until its carrying capacity is achieved. Next, using a population dynamics model, we show under which particular conditions the negative effect of intraspecific competition outweighs the positive effect of seed density increase (due to parasitoid's defense). When these conditions do not hold, the role of plant intraspecific competition is basically limited to the prevention of unbounded population growth, while the parasitoid increases the plant's equilibrium density above its carrying capacity as measured when interacting only with the pollinating seed predator, thus making the system more stable.

3.
Phys Rev E ; 100(6-1): 062414, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962478

RESUMO

Differential diffusion is a source of instability in population dynamics systems when species diffuse with different rates. Predator-prey systems show this instability only under certain specific conditions, usually requiring one to involve Holling-type functionals. Here we study the effects of intraspecific cooperation and competition on diffusion-driven instability in a predator-prey system with a different structure. We conduct the analysis on a generalized population dynamics that bounds intraspecific and interspecific interactions with Verhulst-type saturation terms instead of Holling-type functionals. We find that instability occurs due to the intraspecific saturation or intraspecific interactions, both cooperative and competitive. We present numerical simulations and show spatial patterns due to diffusion.


Assuntos
Fenômenos Ecológicos e Ambientais , Modelos Teóricos , Comportamento Predatório , Animais , Difusão , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...