Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 79(24): 7719-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096420

RESUMO

Histone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn(2+)-dependent HDAC-encoding genes, ffhda1, ffhda2, and ffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production in F. fujikuroi. Single deletions of ffhda1 and ffhda2 resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both the ffhda1 and ffhda2 genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1 Δffhda2 mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1 mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1 mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.


Assuntos
Fusarium/enzimologia , Fusarium/metabolismo , Histona Desacetilases/metabolismo , Metabolismo Secundário/genética , Imunoprecipitação da Cromatina , Fusarium/patogenicidade , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona Desacetilases/genética , Análise em Microsséries , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ativação Transcricional , Virulência
2.
Fungal Genet Biol ; 49(7): 567-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22626844

RESUMO

Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species.


Assuntos
Cruzamentos Genéticos , Fusarium/genética , Genes Fúngicos , Redes e Vias Metabólicas/genética , Recombinação Genética , Giberelinas/genética , Giberelinas/metabolismo , Micotoxinas/genética , Micotoxinas/metabolismo , Fenótipo , Policetídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...