Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(5): e0126513, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950440

RESUMO

Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.


Assuntos
Membro Anterior/fisiologia , Temperatura Alta , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
2.
IEEE Trans Med Imaging ; 30(6): 1265-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21317083

RESUMO

The high sensitivity of fluorescence imaging enables the detection of molecular processes in living organisms. However, diffuse light propagation in tissue prevents accurate recovery of tomographic information on fluorophore distribution for structures embedded deeper than 0.5 mm. Combining optical with magnetic resonance imaging (MRI) provides an accurate anatomical reference for fluorescence imaging data and thereby enables the correlation of molecular with high quality structural/functional information. We describe an integrated system for small animal imaging incorporating a noncontact fluorescence molecular tomography (FMT) system into an MRI detector. By adopting a free laser beam design geometrical constraints imposed by the use of optical fibers could be avoided allowing for flexible fluorescence excitation schemes. Photon detection based on a single-photon avalanche diode array enabled simultaneous FMT/MRI measurements without interference between modalities. In vitro characterization revealed good spatial accuracy of FMT data and accurate quantification of dye concentrations. Feasibility of FMT/MRI was demonstrated in vivo by simultaneous assessment of protease activity and tumor morphology in murine colon cancer xenografts.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/veterinária , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/veterinária , Técnica de Subtração/instrumentação , Técnica de Subtração/veterinária , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Miniaturização , Fotometria/instrumentação , Fotometria/veterinária , Fótons , Ratos , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade , Tomografia Óptica/instrumentação , Tomografia Óptica/veterinária , Transdutores/veterinária
3.
Pharmaceutics ; 3(2): 229-74, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24310495

RESUMO

Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development.

4.
Biomed Eng Online ; 9: 28, 2010 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-20565901

RESUMO

BACKGROUND: Non-invasive planar fluorescence reflectance imaging (FRI) is used for accessing physiological and molecular processes in biological tissue. This method is efficiently used to detect superficial fluorescent inclusions. FRI is based on recording the spatial radiance distribution (SRD) at the surface of a sample. SRD provides information for measuring structural parameters of a fluorescent source (such as radius and depth). The aim of this article is to estimate the depth and radius of the source distribution from SRD, measured at the sample surface. For this reason, a theoretical expression for the SRD at the surface of a turbid sample arising from a spherical light source embedded in the sample, was derived using a steady-state solution of the diffusion equation with an appropriate boundary condition. METHODS: The SRD was approximated by solving the diffusion equation in an infinite homogeneous medium with solid spherical sources in cylindrical geometry. Theoretical predications were verified by experiments with fluorescent sources of radius 2-6 mm embedded at depths of 2-4 mm in a tissue-like phantom. RESULTS: The experimental data were compared with the theoretical values which shows that the root mean square (RMS) error in depth measurement for nominal depth values d = 2, 2.5, 3, 3.5, 4 mm amounted to 17%, 5%, 2%, 1% and 5% respectively. Therefore, the average error in depth estimation was < or = 4% for depths larger than the photon mean free path. CONCLUSIONS: An algorithm is proposed that allows estimation of the location and radius of a spherical source in a homogeneous tissue-like phantom by accounting for anisotropic light scattering effect using FRI modality. Surface SRD measurement enabled accurate estimates of fluorescent depth and radius in FRI modality, and can be used as an element of a more general tomography reconstruction algorithm.


Assuntos
Difusão , Fluorescência , Modelos Teóricos , Imagem Molecular/métodos , Algoritmos , Anisotropia , Processamento de Imagem Assistida por Computador , Fótons , Espalhamento de Radiação , Tomografia
5.
Bioconjug Chem ; 20(10): 1940-9, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19803478

RESUMO

Different imaging modalities can provide complementary information on biological processes at the cellular or molecular level in vitro and in vivo. However, specific molecular probes suitable for a comparison of different imaging modalities are often not readily accessible because their preparation is usually accomplished by individually developed and optimized syntheses. Herein, we present a general, modular synthetic approach that provides access to multiple probes derived from a single precursor by application of the same, efficient functionalization strategy, the Cu(I)-catalyzed cycloaddition of terminal alkynes and azides (click chemistry). To demonstrate the viability and efficiency of this approach, folic acid (FA) was selected as a targeting vector because the preparation of FA-based imaging probes used for SPECT, PET, MRI, and NIRF by reported synthetic strategies is usually difficult to achieve and often results in low overall yields. We prepared a versatile γ-azido-FA precursor as well as a set of alkyne functionalized probes and precursors including ligand systems suitable for the chelation of various (radio)metals, an NIR dye and (18)F- and (19)F-derivatives, which enabled the parallel development of new FA-imaging probes. The Cu(I)-mediated coupling of the alkynes with the γ-azido-FA precursor was accomplished in high yields and with minimal use of protective groups. The various probes were fully characterized spectroscopically as well as in vitro and in vivo. In vitro, all new FA-derivatives exhibited high affinity toward the folic acid receptor (FR) and/or were specifically internalized into FR-overexpressing KB cells. In vivo experiments with nude mice showed that all probes (except the MRI probes which have not been tested yet) accumulated specifically in FR-positive organs and human KB-cell xenografts. However, in vivo imaging revealed significant differences between the various FA-derivatives with respect to unspecific, off-target localization. In general, the comparison of different probes proved the superiority of the more hydrophilic, radiometal-based imaging agents, a result which will guide future efforts for the development of FA-based imaging probes and therapeutic agents. In addition, the strategy presented herein should be readily applicable to other molecules of interest for imaging and therapeutic purposes and thus represents a valuable alternative to other synthetic approaches.


Assuntos
Quelantes/química , Quelantes/metabolismo , Química Click , Receptores de Folato com Âncoras de GPI/química , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Imagem Molecular/métodos , Sondas Moleculares , Animais , Química Click/métodos , Humanos , Células KB , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/síntese química , Transplante de Neoplasias/diagnóstico por imagem , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
6.
Lasers Med Sci ; 22(1): 10-4, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17115238

RESUMO

Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.


Assuntos
Colágeno/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Animais , Eletroforese em Gel de Poliacrilamida , Cavalos , Processamento de Imagem Assistida por Computador , Coelhos , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...