Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(49): 45516-21, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11551949

RESUMO

The quenching of the Y(D)(.) tyrosyl radical in photosystem II by nitric oxide was reported to result from the formation of a weak tyrosyl radical-nitric oxide complex (Petrouleas, V., and Diner, B. A. (1990) Biochim. Biophys. Acta 1015, 131-140). This radical/radical reaction is expected to generate an electron spin resonance (ESR)-silent 3-nitrosocyclohexadienone species that can reversibly regenerate the tyrosyl radical and nitric oxide or undergo rearrangement to form 3-nitrosotyrosine. It has been proposed that 3-nitrosotyrosine can be oxidized by one electron to form the tyrosine iminoxyl radical (>C=N-O*). This proposal was put forth as a result of ESR detection of the iminoxyl radical intermediate when photosystem II was exposed to nitric oxide (Sanakis, Y., Goussias, C., Mason, R. P., and Petrouleas, V. (1997) Biochemistry 36, 1411-1417). A similar iminoxyl radical was detected in prostaglandin H synthase-2 (Gunther, M. R., Hsi, L. C., Curtis, J. F., Gierse, J. K., Marnett, L. J., Eling, T. E., and Mason, R. P. (1997) J. Biol. Chem., 272, 17086-17090). Although the iminoxyl radicals detected in the photosystem II and prostaglandin H synthase-2 systems strongly suggest a mechanism involving 3-nitrosotyrosine, the iminoxyl radical ESR spectrum was not unequivocally identified as originating from tyrosine. We report here the detection of the non-protein L-tyrosine iminoxyl radical generated by two methods: 1) peroxidase oxidation of synthetic 3-nitroso-N-acetyl-L-tyrosine and 2) peroxidase oxidation of free L-tyrosine in the presence of nitric oxide. A newly developed ESR technique that uses immobilized enzyme was used to perform the ESR experiments. Analysis of the high resolution ESR spectrum of the tyrosine iminoxyl radical generated from free tyrosine and nitric oxide reveals a 28.4-G isotropic nitrogen hyperfine coupling and a 2.2-G proton hyperfine coupling assigned to the proton originally ortho to the phenoxyl oxygen.


Assuntos
Radicais Livres , Óxido Nítrico/química , Compostos Nitrosos/química , Tirosina/química , Antioxidantes/química , Ácido Ascórbico/química , Espectroscopia de Ressonância de Spin Eletrônica , Iminas/química , Oxirredução , Tirosina/análogos & derivados
2.
Free Radic Biol Med ; 28(5): 709-19, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10754266

RESUMO

The reaction between metmyoglobin (metMb) and hydrogen peroxide has been known since the 1950s to produce globin-centered free radicals. The direct electron spin resonance spectrum of a solution of horse metMb and hydrogen peroxide at room temperature consists of a multilined signal that decays in minutes at room temperature. Comparison of the direct ESR spectra obtained from the system under N(2)- and O(2)-saturated conditions demonstrates the presence of a peroxyl radical, identified by its g-value of 2.014. Computer simulations of the spectra recorded 3 s after the mixture of metMb and H(2)O(2) were calculated using hyperfine coupling constants of a(H2,6) = 1.3 G and a(H3,5) = 7.0 G for the ring and a(beta)(H1) = 16.7 G and a(beta)(H2) = 14.2 G for the methylene protons, and are consistent with a highly constrained, conformationally unstable tyrosyl radical. Spectra obtained at later time points contained a mixture of the 3 s signal and another signal that was insufficiently resolved for simulation. Efficient spin trapping with 3, 5-dibromo-4-nitrosobenzenesulfonic acid was observed only when the spin trap was present at the time of H(2)O(2) addition. Spin trapping experiments with either 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or perdeuterated 2-methyl-2-nitrosopropane (MNP-d(9)), which have been shown to trap tyrosyl radicals, were nearly equally effective when the spin trap was added before or 10 min after the addition of H(2)O(2). The superhyperfine structure of the ESR spectra obtained from Pronase-treated MNP-d(9)/*metMb confirmed the assignment to a tyrosyl radical. Delayed spin trapping experiments with site-directed mutant myoglobins in which either Tyr-103 or Tyr-146 was replaced by phenylalanine indicated that radical adduct formation with either DMPO or MNP-d(9) requires the presence of Tyr-103 at all time points, implicating that residue as the radical site.


Assuntos
Peróxido de Hidrogênio/metabolismo , Metamioglobina/metabolismo , Tirosina/metabolismo , Animais , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica/estatística & dados numéricos , Radicais Livres/metabolismo , Cavalos , Técnicas In Vitro , Metamioglobina/química , Tirosina/química
3.
J Magn Reson ; 141(2): 291-300, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10579952

RESUMO

We report here the first non-Kramers (NK) ESEEM and ENDOR study of a mononuclear NK center, presenting extensive parallel-mode ESEEM and ENDOR measurements on the S(t) = 2 ferrous center of [Fe(II)ethylenediamine-N,N,N',N'-tetraacetato](2-); [Fe(II)EDTA)](2-). The results disclose an anomalous equivalence of the experimental patterns produced by the two techniques. A simple theoretical treatment of the frequency-domain patterns expected for NK-ESEEM and NK-ENDOR rationalizes this correspondence and further suggests that the very observation of NK-ENDOR is the result of an unprecedentedly large hyperfine enhancement effect. The mixed nitrogen-carboxylato oxygen coordination of [Fe(II)EDTA](2-) models that of the protein-bound diiron centers, although with a higher coordination number. Analysis of the NK-ESEEM measurements yields the quadrupole parameters for the (14)N ligands of [Fe(II)EDTA](2-), K = 1.16(1) MHz, 0

Assuntos
Ácido Edético/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Ferrosos/química , Modelos Teóricos , Fenômenos Químicos , Físico-Química
4.
J Biol Chem ; 274(35): 24611-6, 1999 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-10455126

RESUMO

Cyanide (CN(-)) is a frequently used inhibitor of mitochondrial respiration due to its binding to the ferric heme a(3) of cytochrome c oxidase (CcO). As-isolated CcO oxidized cyanide to the cyanyl radical ((.)CN) that was detected, using the ESR spin-trapping technique, as the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(.)CN radical adduct. The enzymatic conversion of cyanide to the cyanyl radical by CcO was time-dependent but not affected by azide (N(3)(-)). The small but variable amounts of compound P present in the as-isolated CcO accounted for this one-electron oxidation of cyanide to the cyanyl radical. In contrast, as-isolated CcO exhibited little ability to catalyze the oxidation of azide, presumably because of azide's lower affinity for the CcO. However, the DMPO/(.)N(3) radical adduct was readily detected when H(2)O(2) was included in the system. The results presented here indicate the need to re-evaluate oxidative stress in mitochondria "chemical hypoxia" induced by cyanide or azide to account for the presence of highly reactive free radicals.


Assuntos
Azidas/química , Cianetos/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Animais , Bovinos , Simulação por Computador , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Peróxido de Hidrogênio/química , Mitocôndrias Cardíacas/enzimologia , Marcadores de Spin , Detecção de Spin , Fatores de Tempo
5.
J Biol Chem ; 273(46): 30116-21, 1998 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-9804766

RESUMO

Cellular systems contain as much as millimolar concentrations of both ascorbate and GSH, although the GSH concentration is often 10-fold that of ascorbate. It has been proposed that GSH and superoxide dismutase (SOD) act in a concerted effort to eliminate biologically generated radicals. The tyrosyl radical (Tyr.) generated by horseradish peroxidase in the presence of hydrogen peroxide can react with GSH to form the glutathione thiyl radical (GS.). GS. can react with the glutathione anion (GS-) to form the disulfide radical anion (GSSG-). This highly reactive disulfide radical anion will reduce molecular oxygen, forming superoxide and glutathione disulfide (GSSG). In a concerted effort, SOD will catalyze the dismutation of superoxide, resulting in the elimination of the radical. The physiological relevance of this GSH/SOD concerted effort is questionable. In a tyrosyl radical-generating system containing ascorbate (100 microM) and GSH (8 mM), the ascorbate nearly eliminated oxygen consumption and diminished GS. formation. In the presence of ascorbate, the tyrosyl radical will oxidize ascorbate to form the ascorbate radical. When measuring the ascorbate radical directly using fast-flow electron spin resonance, only minor changes in the ascorbate radical electron spin resonance signal intensity occurred in the presence of GSH. These results indicate that in the presence of physiological concentrations of ascorbate and GSH, GSH is not involved in the detoxification pathway of oxidizing free radicals formed by peroxidases.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Modelos Químicos , Tirosina/metabolismo , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Dissulfeto de Glutationa/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução , Consumo de Oxigênio , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...