Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703200

RESUMO

A liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source operating at a nominal power of 30 W and solution flow rate of 30 µL min-1 and supported in a He sheath gas flow rate of 500 mL min-1 was interfaced to an Orbitrap mass spectrometer and assessed for use in rapid identification of inorganic and organic arsenic species, including As(III), As(V), monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine in a 2% (v/v) nitric acid medium. Mass spectral acquisition in low-resolution mode, using only the ion trap analyzer, provided detection of protonated molecular ions for AsBet (m/z 179), DMA (m/z 139), MMA (m/z 141), and As(V) (m/z 143). As(III) is oxidized to As(V), likely due to in-source processes. Typical fragmentation of these compounds resulted in the loss of either water or methyl groups, as appropriate, i.e., introducing DMA also generated ions corresponding to MMA and As(V) as dissociation products. Structure assignments were also confirmed by high-resolution Orbitrap measurements. Spectral fingerprint assignments were based on the introduction of solutions containing 5 µg mL-1 of each arsenic compound.

2.
Anal Chem ; 96(3): 1241-1250, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183660

RESUMO

Herein, we report on surprisingly efficient photochemical vapor generation (PVG) of Ru, Re, and especially Ir, achieved from very dilute HCOOH media employing a thin-film flow-through photoreactor operated in flow injection mode. In the absence of added metal ion sensitizers, efficiencies near 20% for Ir and approximately 0.06% for Ru and Re occur in a narrow range of HCOOH concentrations (around 0.01 M), significantly higher than previously reported from conventionally optimized HCOOH concentrations (1-20 M). A substantial enhancement in efficiency, to around 9 and 1.5%, could be realized for Ru and Re, respectively, when 0.005 M HCOONa served as the PVG medium. The addition of metal ion sensitizers (particularly Cd2+ and Co2+) to 0.01 M HCOOH significantly enhanced PVG efficiencies to 17, 2.2, and 81% for Ru, Re, and Ir, respectively. Possible mechanistic aspects occurring in dilute HCOOH media are discussed, wherein this phenomenon is attributed to the action of 185 nm radiation available in the thin-film flow-through photoreactor. An extended study of PVG of Fe, Co, Ni, As, Se, Mo, Rh, Te, W, and Bi from both dilute HCOOH and CH3COOH was undertaken, and several elements for which a similar phenomenon appears were identified (i.e., Co, As, Se, Te, and Bi). Although use of dilute HCOOH media is attractive for practical analytical applications employing PVG, it is less tolerant toward dissolved gases and interferents in the liquid phase due to the likely lower concentrations of free radicals and aquated electrons required for analyte ion reduction and product synthesis.

3.
Anal Chem ; 95(7): 3694-3702, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36763590

RESUMO

Herein, we describe the highly efficient photochemical vapor generation (PVG) of a volatile species of Ir (presumably iridium tetracarbonyl hydride) for subsequent detection by inductively coupled plasma mass spectrometry (ICPMS). A thin-film flow-through photoreactor, operated in flow injection mode, provided high efficiency following optimization of identified key PVG parameters, notably, irradiation time, pH of the reaction medium, and the presence of metal sensitizers. For routine use and analytical application, PVG conditions comprising 4 M formic acid as the reaction medium, the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+ as added sensitizers, and an irradiation time of 29 s were chosen. An almost 90% overall PVG efficiency for both Ir3+ and Ir4+ oxidation states was accompanied by excellent repeatability of 1.0% (n = 15) of the peak area response from a 50 ng L-1 Ir standard. Limits of detection ranged from 3 to 6 pg L-1 (1.5-3 fg absolute), dependent on use of the ICPMS reaction/collision cell. Interferences from several transition metals and metalloids as well as inorganic acids and their anions were investigated, and outstanding tolerance toward chloride was found. Accuracy of the developed methodology was verified by analysis of NIST SRM 2556 (Used Auto Catalyst) following peroxide fusion for sample preparation. Practical application was further demonstrated by the direct analysis of spring water, river water, lake water, and two seawater samples with around 100% spike recovery and no sample preparation except the addition of formic acid and the sensitizers.

4.
Anal Chem ; 93(49): 16543-16551, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846841

RESUMO

An extremely sensitive methodology for the determination of Ru was developed by coupling photochemical vapor generation (PVG) analyte introduction with inductively coupled plasma mass spectrometry (ICPMS). PVG was undertaken with a thin-film flow-through photoreactor in a medium comprising 8 M formic acid in the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+. The volatile product (presumably ruthenium pentacarbonyl) was generated in a flow injection mode, yielding an overall efficiency of 29% at a sample flow rate of 1.4 mL min-1. The presence of both Co2+ and Cd2+ sensitizers enhanced PVG efficiency by 3,200-fold, permitting a 31 s irradiation time. Although enhanced efficiency (≈40%) could be obtained with increased Co2+ concentration, this was not suitable for routine use due to co-generation of cobalt carbonyl. Excellent repeatability (<2.5%) and reproducibility (4%) were achieved for 200 ng L-1 Ru3+. Limits of detection ranged from 20 to 42 pg L-1 (10-21 fg absolute) depending on the measured isotope and operational mode of the ICPMS reaction/collision cell. Interferences from inorganic acids and their anions, several transition metals, and metalloids were investigated. Practical application of the methodology was demonstrated by the analysis of seven water samples of various matrix complexities (well water, spring water, contaminated water, and seawater).


Assuntos
Cobalto , Rutênio , Cádmio , Espectrometria de Massas , Reprodutibilidade dos Testes
5.
Anal Bioanal Chem ; 413(13): 3443-3453, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33755769

RESUMO

Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.

6.
Anal Chem ; 91(20): 13306-13312, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31537056

RESUMO

Efficient photochemical vapor generation (PVG) of tungsten has been achieved for the first time using a 19 W thin film flow-through photoreactor. The volatile product (most probably tungsten hexacarbonyl) was generated using a flow injection mode and 40% (v/v) formic acid as the reaction medium. An inductively coupled plasma mass spectrometer was utilized for ultrasensitive detection. The addition of Cd2+ as a sensitizer was critical, enhancing the overall PVG efficiency some 30 000-fold. At an optimal irradiation time of 19 s, a 6.1-fold enhancement factor and an overall PVG efficiency of 43% were determined from a comparison of the response to direct solution nebulization when using a sample flow rate of 2 mL min-1 and 500 mg L-1 Cd2+ as a sensitizer. A limit of detection of 0.9 ng L-1 and repeatability (RSD) of 2% at 100 ng L-1 were achieved. Interference from inorganic acids (HNO3, HCl, H2SO4, and HF) was investigated with respect to analytical application to real samples. The accuracy and practical feasibility of this ultrasensitive methodology was successfully verified by analysis of Certified Reference Material CTA-FFA-1 (Fine Fly Ash) and six natural water samples with low W concentrations.

7.
Anal Chem ; 90(19): 11688-11695, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189726

RESUMO

Photochemical vapor generation (PVG) of Mo was accomplished using a 19 W high-efficiency flow-through photoreactor operating in a flow injection mode using 30-50% (w/v) formic acid as a reaction medium. The generated volatile product (most probably molybdenum hexacarbonyl) was directed by an argon carrier gas to a plastic gas-liquid separator and introduced into the spray chamber of an inductively coupled plasma mass spectrometer for detection. Particular attention was paid to the determination of overall PVG efficiency relative to that for liquid nebulization. Utilizing a sample flow rate of 1.25 mL min-1, corresponding to an irradiation time of 38 s, PVG efficiencies in the range 46-66% were achieved. The efficiency could be further enhanced by the presence of mg L-1 added Fe3+ ions. A limit of detection of 1.2 ng L-1 and precision of 3% (RSD) at 250 ng L-1 were achieved. Interferences from inorganic anions likely to be encountered during analytical application to real samples (NO3-, Cl-, SO42-, NO2-, and ClO4-) were investigated in detail. The accuracy and applicability of this sensitive methodology was successfully verified by analysis of fresh water Standard Reference Material NIST 1643e, two seawater Certified Reference Materials (NASS-7 and CASS-6), and by analysis of two samples of commercial dietary supplements solubilized in formic acid.

8.
Anal Chim Acta ; 1028: 11-21, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29884347

RESUMO

Atomization of SeH2 in an externally heated multiple microflame quartz tube atomizer (MMQTA) as well as planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes. Deposits of Se on inner surfaces of the atomizers were quantified and their distribution visualized by autoradiography with 75Se radiotracer. The gas phase fraction of Se transported beyond the confines of the atomizers was also determined. In the MMQTA, a 15% mass fraction of Se was deposited in a narrow zone at both colder ends of the optical arm (100-400 °C). By contrast, a 25-40% mass fraction of Se was deposited homogeneously along the entire length of the optical arm of the DBD, depending on detection technique employed. The fraction of Se transported outside the MMQTA approached 90%, whereas it was 50-70% in the DBD. The presence of H2 was essential for atomization of selenium hydride in both atomizers. The gaseous effluent arising from the hydride generator as well as the atomizers was investigated by direct analysis in real time (DART) coupled to an Orbitrap-mass spectrometer, enabling identification of major gas phase species of Se.

9.
Anal Chem ; 90(6): 4112-4118, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29494129

RESUMO

A novel, reliable, and sensitive approach for the determination of chlorine by sector field inductively coupled plasma mass spectrometry (SF-ICPMS) using photochemical vapor generation for sample introduction is presented. Methyl chloride is generated from different chlorine species in a flow-through photochemical reactor using a 1% solution of acetic acid containing 7.5 µg g-1 of Cu2+. The volatile product is directed by an argon carrier gas to a gas-liquid separator and introduced into the instrument. A sample flow rate at 1.7 mL min-1 and a 45 s irradiation time provided a 74-fold enhancement in sensitivity compared to conventional nebulization. A blank-limited detection limit of 0.5 ng g-1 for chloride, suitable for quantitation at trace levels, was achieved. The proposed method was validated by analysis of two certified reference materials, NIST SRM 1568b rice flour and SRM 1571 orchard leaves, with satisfactory results, as well as three varieties of bottled water, achieving spike recoveries between 101% and 105%.

10.
Anal Chim Acta ; 1005: 16-26, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29389315

RESUMO

Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.

11.
Anal Chem ; 88(3): 1804-11, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26796626

RESUMO

Atomization of bismuthane in a planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes, including atomic absorption spectrometry (AAS) to monitor distribution of free atoms along the optical path and direct analysis in real time (DART) coupled to an Orbitrap mass spectrometer to identify the structure of the species arising from the hydride generator as well as the atomizer. Results obtained with the DBD were compared to those from a conventional externally heated quartz tube atomizer (QTA). Free Bi atoms were essentially absent outside the central part of the DBD atomizer, suggesting their high reactivity. The gas phase analyte fraction transported beyond the confines of the DBD or QTA atomizers, quantified by inductively coupled plasma mass spectrometry (ICP-MS), was less than 10%. The amount of Bi found in acidic leachates of the interiors of both atomizers, representing the fraction retained on their surfaces, was ca. 90%. These complementary experiments comprising the determination of recovered Bi in the nitric acid leachates from deposition in the atomizer on the one hand and quantification of the Bi fraction transportable outside the atomizer on the other, were in excellent agreement, providing 100% mass balance of detected analyte. The high fraction of Bi deposited in the atomizers indicates significant reactivity of free Bi atoms, which is in accord with the fact that almost no free Bi atoms exist beyond the physical boundaries of the DBD. The extent of interference from other hydride forming elements (As, Sb, Se) on Bi response by AAS using DBD and QTA atomizers was investigated, with the former atomizer providing superior performance. Compared to QTA, DBD provided 2 orders of magnitude and 1 order of magnitude, respectively, better resistance to interference from Se and Sb.

12.
Anal Chim Acta ; 901: 34-40, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26614055

RESUMO

Photochemical vapor generation (PVG) sample introduction coupled to inductively coupled plasma mass spectrometry (ICPMS) is described for the determination of As in seawater. A Plackett-Burman design (PBD) and central composite design (CCD) were employed to evaluate the significance of experimental variables relevant to the optimization of PVG-ICPMS detection. The impact of the saline matrix on the suppression of analyte signal was eliminated by use of a mixture of 20% (v/v) formic and 20% acetic acid (v/v) as the photochemical reductants. Optimized conditions yielded equivalent PVG generation efficiencies for As(III), As(V), monomethylarsonic acids (MMAs) and dimethylarsinic acids (DMAs), permitting direct and rapid determination of total arsenic in seawater without any other sample pre-treatment. Quantitation was accomplished using one point gravimetric standard addition along with a spike of (82)Se internal standard to compensate for signal drift and fluctuation during analysis. The resulting method detection limit of 3 pg g(-1) (3σ) provided a 15-fold improvement over that obtained using direct solution nebulization, and is comparable to that for conventional chemical hydride generation (HG)-ICPMS. Accuracy was demonstrated by analysis of two Certified Reference Materials (NASS-6 and CASS-5 seawater) with satisfying results characterized by precisions of 3.5% and 3.2% RSD for CASS-5 and NASS-6, respectively.

13.
Anal Chem ; 87(15): 7996-8004, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26158784

RESUMO

A novel and sensitive approach for the accurate determination of antimony (Sb) in natural waters is described using photochemical vapor generation (PVG) coupled with inductively coupled plasma mass spectrometry (ICPMS) for detection. Utilizing a unique flow-through photochemical reactor capable of subjecting the samples to deep-UV (185 nm) radiation, generation efficiency was found to be independent of whether Sb(III), Sb(V), or organometallic species [trimethyltantimony(V)dibromine, TMSb(V)] were present, eliminating the shortcoming of Sb species depended sensitivity encountered during direct solution nebulization by ICPMS. Furthermore, the potentially severe matrix effect from seawater was efficiently eliminated by using a mixture of 5% (v/v) formic and 15% acetic acids (v/v) as the photochemical reductant, making direct determination of Sb in seawater feasible. The proposed method provides a 15-fold improvement in sensitivity over direct solution nebulization. A method detection limit of 0.0006 ng g(-1) based on external calibration was obtained (0.0002 ng g(-1) for isotope dilution), yielding a 15-fold improvement over that for direct solution nebulization. Accuracy is demonstrated by analysis of two water certified reference materials (CRMs, e.g., SLRS-6 and NIST 1640a) with satisfying results. In addition, spike recoveries of 100.6 ± 5.5% and 100.8 ± 3.8% (standard deviation, n = 3) were obtained for NASS-6 and CASS-5 seawater CRMs, respectively, since no certified values for Sb has been established for these materials. The performance of several calibration strategies, including double isotope dilution (ID), multiple and single-point gravimetric standard additions with internal standardization, as well as multiple and single-point gravimetric standard additions alone was examined. High precision of determination of Sb in four natural water samples (0.51-1.4%) was realized based on ID calibration, whereas one-point gravimetric standard addition calibration with internal standardization provided precisions of 1.6% and 3.3% at 0.22 and 0.44 ng g(-1) levels, respectively, in seawater.

14.
Anal Chem ; 87(8): 4495-502, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25826198

RESUMO

A novel and sensitive approach for the accurate and precise determination of Pb in environmental samples is presented using transition metal ion-assisted photochemical vapor generation (PVG) for sample introduction with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) detection. A significant improvement in PVG efficiency of lead is achieved in the presence of transition metal ions (Co(2+) and Ni(2+)) in solutions of 5% (v/v) formic acid. The determination of Pb in digests of sediment or soil samples is readily achieved due to coexisting transition metal ions which facilitate the PVG reaction. The method detection limit of 0.005 ng g(-1) (3σ) using external calibration is comparable to that obtained using hydride generation (HG) ICPMS. However, PVG methodology is simpler, results in lower blanks, and avoids unstable reagents. The accuracy of the proposed method was demonstrated by analysis of several environmental certified reference materials (CRMs; SLRS-5 and SRM1640a river water CRMs and MESS-3, MESS-4, and SRM2702 sediments) with satisfying results. High precision of determination (<0.4% RSD) of Pb in river water and sediments was realized on the basis of isotope dilution calibration.

15.
Anal Chem ; 87(5): 3072-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25649253

RESUMO

A unique flow-through photochemical reactor is utilized for the generation of volatile methyl bromide from aqueous solutions of bromide and bromate ions in a medium of 2% acetic acid containing 3000 µg/mL NH4Cl. The volatile product is transported to a thin-film gas-liquid phase separator and directed to an inductively coupled plasma (ICP) tine-of-flight mass spectrometer for detection and quantitation using either of the (79)Br or (81)Br isotopes. Utilizing a sample flow rate of 3.3 mL/min and a 13 s irradiation time, a detection limit of 0.14 ng/mL is achieved, yielding a 17-fold enhancement over conventional solution nebulization. The estimated generation efficiency of 95% provides for a significant increase in analyte transport efficiency to the ICP. Precision of replicate measurement is 2.5% (RSD) at 20 ng/mL. The methodology was validated by successful determination of bromine in reference materials, including IRMM (BCR-611) low level bromide in groundwater, NIST SRM 1568b Rice Flour, and SRM 1632 bituminous coal.


Assuntos
Bromo/análise , Poluentes Ambientais/análise , Processos Fotoquímicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Atômica/métodos , Raios Ultravioleta , Volatilização
16.
Anal Chem ; 87(7): 3699-705, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25723904

RESUMO

Instrumental neutron activation analysis with both relative and k0 standardization was used in four experienced laboratories to determine element mass fractions in single-wall carbon nanotube certified reference material (CRM) SWCNT-1. Results obtained were evaluated using the National Institute of Standards and Technology (NIST) "Type B On Bias" approach and yielded consensus values in agreement with National Research Council Canada (NRCC) certified values for Fe, Co, Ni, and Mo and provided mass fraction values for 13 additional elements, namely, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Br, La, W, and Au. In addition, prompt γ neutron activation analysis was employed to determine mass fractions of H, B, Co, Ni, and Mo. Results of this work provide a basis for the establishment of reference values of element mass fractions in CRM SWCNT-1, thus expanding its usability for more accurate characterization and benchmarking of similar nanotechnology materials.

17.
Anal Chem ; 86(19): 9620-5, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25248133

RESUMO

Atomization of bismuth hydride in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized and the performance of this device compared to that of a conventional quartz tube atomizer (QTA) for atomic absorption spectrometry (AAS). Modification of the inner surface of the DBD atomizer using dimethyldichlorsilane (DMDCS) was essential since it improved sensitivity by a factor of 2-4. Argon, at a flow rate of 125 mL min(-1), was the best DBD discharge gas. Free Bi atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. The detection limit for Bi (1.1 ng mL(-1)) is worse than with the QTA (0.16 ng mL(-1) Bi). A poorer detection limit compared to a QTA is a consequence of the shorter optical path of the DBD. Moreover, the lower atomization efficiency and/or faster decay of free atoms in the DBD has to be considered. The performance of the DBD as an atomizer reflects both effects, i.e., atomization efficiency and free atom decay, was estimated to be 65% of that of the externally heated quartz tube atomizer. Nevertheless, this hydride generation DBD-AAS approach can be used for the routine determination of Bi, providing repeatability and accuracy comparable to that reached with a QTA, as demonstrated by analysis of NIST SRM 1643e (trace elements in water). The potential of in-atomizer preconcentration in a DBD atomizer is outlined.

18.
Anal Chem ; 85(1): 374-80, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23171470

RESUMO

An effective approach to the digestion of fluoropolymers for the determination of Ag, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, and Ni impurities has been developed using microwave-induced combustion (MIC) in closed quartz vessels pressurized with oxygen. Samples that were examined included the following: polytetrafluorethylene (PTFE); polytetrafluoroethylene with an additional modifier, perfluoropropylvinylether (PTFE-TFM); and fluorinated ethylene propylene (FEP). A quartz device was used as a sample holder, and the influence of the absorber solution was evaluated. Determination of trace elements was performed by inductively coupled plasma-optical emission and mass spectrometry. Neutron activation analysis (NAA) was used for validation purposes. Results were also compared to those obtained using microwave-assisted acid extraction in high-pressure closed systems. Dilute nitric acid (5 mol L(-1)), which was selected as the absorbing medium, was used to reflux the sample for 5 min after the combustion. Using these conditions, agreement for all analytes was better than 98% when compared to values determined by NAA. The residual carbon content in the digests was lower than 1%, illustrating the high efficiency of the method. Up to 8 samples could be digested within 30 min using MIC, providing a suitable throughput, taking into account the inertness of such samples.


Assuntos
Espectrometria de Massas , Micro-Ondas , Politetrafluoretileno/química , Oligoelementos/análise , Nêutrons , Ácido Nítrico/química , Quartzo/química
19.
Anal Chem ; 85(2): 877-81, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23215254

RESUMO

We report a novel derivatization chemistry for determination of fluoride based on the batch reaction of fluoride ions with triethyloxonium tetrachloroferrate(III) in a closed vessel to yield fluoroethane. Gaseous fluoroethane was readily separated from the matrix, sampled from the headspace, and determined by gas chromatography/mass spectrometry. The method was validated using rainwater certified reference material (IRMM CA408) and subsequently applied to the determination of fluoride in various matrixes, including tap water, seawater, and urine. An instrumental limit of detection of 3.2 µg/L with a linear range up to 50 mg/L was achieved. The proposed derivatization is a one-step reaction, requires no organic solvents, and is safe, as the derivatizing agent is nonvolatile. Determination of fluoride is affected by common fluoride-complexing agents, such as Al(III) and Fe(III). The effect of large amounts of these interferences was studied, and the adverse effect of these ions was eliminated by use of the method of standard additions.


Assuntos
Compostos Férricos/química , Fluoretos/análise , Cromatografia Gasosa-Espectrometria de Massas
20.
J Am Soc Mass Spectrom ; 23(12): 2178-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23055075

RESUMO

Recent studies of the formation of arsane in the borohydride/arsenate reaction demonstrate the occurrence of condensation cascades whereby small quantities of di- and triarsanes are formed. In this study, the isotopic composition of these di- and triarsanes was examined using deuterium labelled borohydrides. A statistical model was employed to construct the mass spectra of all diarsane and triarsane isotopologues (As(2)H(n)D(4-n) and As(3)H(n)D(5-n)) from the mass spectra of isotopically pure compounds (As(2)H(4), As(2)D(4), As(3)H(5), and As(3)D(5)). Subsequent deconvolution of the experimental mixed spectra shows that incorporation of hydrogen closely follows the binomial distribution, in accord with arsane formation. The H/D distribution in arsane, diarsane, and triarsane isotopologues is binomial in the absence of any interference. However, this is significantly altered by the presence of some transition metals; presented here, for the first time, are the effects of Rh(III). The presence of Rh(III) in the As(III)/[BD(4)](-) system entails the incorporation of hydrogen into the arsanes arising from the solvent, altering the expected binomial H/D distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...