Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(10): e1010613, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228001

RESUMO

Screening for novel antibacterial compounds in small molecule libraries has a low success rate. We applied machine learning (ML)-based virtual screening for antibacterial activity and evaluated its predictive power by experimental validation. We first binarized 29,537 compounds according to their growth inhibitory activity (hit rate 0.87%) against the antibiotic-resistant bacterium Burkholderia cenocepacia and described their molecular features with a directed-message passing neural network (D-MPNN). Then, we used the data to train an ML model that achieved a receiver operating characteristic (ROC) score of 0.823 on the test set. Finally, we predicted antibacterial activity in virtual libraries corresponding to 1,614 compounds from the Food and Drug Administration (FDA)-approved list and 224,205 natural products. Hit rates of 26% and 12%, respectively, were obtained when we tested the top-ranked predicted compounds for growth inhibitory activity against B. cenocepacia, which represents at least a 14-fold increase from the previous hit rate. In addition, more than 51% of the predicted antibacterial natural compounds inhibited ESKAPE pathogens showing that predictions expand beyond the organism-specific dataset to a broad range of bacteria. Overall, the developed ML approach can be used for compound prioritization before screening, increasing the typical hit rate of drug discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Estados Unidos , Bibliotecas de Moléculas Pequenas/farmacologia , Aprendizado de Máquina , Antibacterianos/farmacologia
2.
J Cheminform ; 14(1): 12, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279211

RESUMO

MOTIVATION: Chemical-genetic interaction profiling is a genetic approach that quantifies the susceptibility of a set of mutants depleted in specific gene product(s) to a set of chemical compounds. With the recent advances in artificial intelligence, chemical-genetic interaction profiles (CGIPs) can be leveraged to predict mechanism of action of compounds. This can be achieved by using machine learning, where the data from a CGIP is fed into the machine learning platform along with the chemical descriptors to develop a chemogenetically trained model. As small molecules can be considered non-structural data, graph convolutional neural networks, which can learn from the chemical structures directly, can be used to successfully predict molecular properties. Clustering analysis, on the other hand, is a critical approach to get insights into the underlying biological relationships between the gene products in the high-dimensional chemical-genetic data. METHODS AND RESULTS: In this study, we proposed a comprehensive framework based on the large-scale chemical-genetics dataset built in Mycobacterium tuberculosis for predicting CGIPs using graph-based deep learning models. Our approach is structured into three parts. First, by matching M. tuberculosis genes with homologous genes in Escherichia coli (E. coli) according to their gene products, we grouped the genes into clusters with distinct biological functions. Second, we employed a directed message passing neural network to predict growth inhibition against M. tuberculosis gene clusters using a collection of 50,000 chemicals with the profile. We compared the performance of different baseline models and implemented multi-label tasks in binary classification frameworks. Lastly, we applied the trained model to an externally curated drug set that had experimental results against M. tuberculosis genes to examine the effectiveness of our method. Overall, we demonstrate that our approach effectively created M. tuberculosis gene clusters, and the trained classifier is able to predict activity against essential M. tuberculosis targets with high accuracy. CONCLUSION: This work provides an analytical framework for modeling large-scale chemical-genetic datasets for predicting CGIPs and generating hypothesis about mechanism of action of novel drugs. In addition, this work highlights the importance of graph-based deep neural networks in drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...