Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS One ; 18(11): e0292644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019836

RESUMO

INTRODUCTION: The severity of COVID-19 disease varies substantially between individuals, with some infections being asymptomatic while others are fatal. Several risk factors have been identified that affect the progression of SARS-CoV-2 to severe COVID-19. They include age, smoking and presence of underlying comorbidities such as respiratory illness, HIV, anemia and obesity. Given that respiratory illness is one such comorbidity and is affected by hand hygiene, it is plausible that improving access to handwashing could lower the risk of severe COVID-19 among a population. In this paper, we estimate the potential impact of improved access to handwashing on the risk of respiratory illness and its knock-on impact on the risk of developing severe COVID-19 disease across Zimbabwe. METHODS: Spatial generalized additive models were applied to cluster level data from the 2015 Demographic and Health Survey. These models were used to generate continuous (1km resolution) estimates of risk factors for severe COVID-19, including prevalence of major comorbidities (respiratory illness, HIV without viral load suppression, anemia and obesity) and prevalence of smoking, which were aggregated to district level alongside estimates of the proportion of the population under 50 from Worldpop data. The risk of severe COVID-19 was then calculated for each district using published estimates of the relationship between comorbidities, smoking and age (under 50) and severe COVID-19. Two scenarios were then simulated to see how changing access to handwashing facilities could have knock on implications for the prevalence of severe COVID-19 in the population. RESULTS: This modeling conducted in this study shows that (1) current risk of severe disease is heterogeneous across the country, due to differences in individual characteristics and household conditions and (2) that if the quantifiable estimates on the importance of handwashing for transmission are sound, then improvements in handwashing access could lead to reductions in the risk of severe COVID-19 of up to 16% from the estimated current levels across all districts. CONCLUSIONS: Taken alongside the likely impact on transmission of SARS-CoV-2 itself, as well as countless other pathogens, this result adds further support for the expansion of access to handwashing across the country. It also highlights the spatial differences in risk of severe COVID-19, and thus the opportunity for better planning to focus limited resources in high-risk areas in order to potentially reduce the number of severe cases.


Assuntos
Anemia , COVID-19 , Infecções por HIV , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Desinfecção das Mãos , SARS-CoV-2 , Zimbábue/epidemiologia , Obesidade , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle
2.
PLoS Negl Trop Dis ; 17(6): e0011353, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327203

RESUMO

Understanding the factors associated with cholera outbreaks is an integral part of designing better approaches to mitigate their impact. Using a rich set of georeferenced case data from the cholera epidemic that occurred in Harare from September 2018 to January 2019, we apply spatio-temporal modelling to better understand how the outbreak unfolded and the factors associated with higher risk of being a reported case. Using Call Detail Records (CDR) to estimate weekly population movement of the community throughout the city, results suggest that broader human movement (not limited to infected agents) helps to explain some of the spatio-temporal patterns of cases observed. In addition, results highlight a number of socio-demographic risk factors and suggest that there is a relationship between cholera risk and water infrastructure. The analysis shows that populations living close to the sewer network, with high access to piped water are associated with at higher risk. One possible explanation for this observation is that sewer bursts led to the contamination of the piped water network. This could have turned access to piped water, usually assumed to be associated with reduced cholera risk, into a risk factor itself. Such events highlight the importance of maintenance in the provision of SDG improved water and sanitation infrastructure.


Assuntos
Cólera , Saneamento , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , Água , Zimbábue/epidemiologia , Surtos de Doenças/prevenção & controle
3.
Int Health ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191201

RESUMO

BACKGROUND: Access to affordable, quality healthcare is the key element of universal health coverage (UHC). This study examines the effectiveness of the neglected tropical disease (NTD) mass drug administration (MDA) campaign approach as a means to deliver UHC, using the example of the Liberia national programme. METHODS: We first mapped the location of 3195 communities from the 2019 national MDA treatment data reporting record of Liberia. The association between coverage for onchocerciasis and lymphatic filariasis treatment achieved in these communities was then explored using a binomial geo-additive model. This model employed three key determinants for community 'remoteness': population density and the modelled travel time of communities to their supporting health facility and to their nearest major settlement. RESULTS: Maps produced highlight a small number of clusters of low treatment coverage in Liberia. Statistical analysis suggests there is a complex relationship between treatment coverage and geographic location. CONCLUSIONS: We accept the MDA campaign approach is a valid mechanism to reach geographically marginal communities and, as such, has the potential to deliver UHC. We recognise there are specific limitations requiring further study.

4.
BMJ Glob Health ; 8(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208120

RESUMO

INTRODUCTION: Maps of malaria risk are important tools for allocating resources and tracking progress. Most maps rely on cross-sectional surveys of parasite prevalence, but health facilities represent an underused and powerful data source. We aimed to model and map malaria incidence using health facility data in Uganda. METHODS: Using 24 months (2019-2020) of individual-level outpatient data collected from 74 surveillance health facilities located in 41 districts across Uganda (n=445 648 laboratory-confirmed cases), we estimated monthly malaria incidence for parishes within facility catchment areas (n=310) by estimating care-seeking population denominators. We fit spatio-temporal models to the incidence estimates to predict incidence rates for the rest of Uganda, informed by environmental, sociodemographic and intervention variables. We mapped estimated malaria incidence and its uncertainty at the parish level and compared estimates to other metrics of malaria. To quantify the impact that indoor residual spraying (IRS) may have had, we modelled counterfactual scenarios of malaria incidence in the absence of IRS. RESULTS: Over 4567 parish-months, malaria incidence averaged 705 cases per 1000 person-years. Maps indicated high burden in the north and northeast of Uganda, with lower incidence in the districts receiving IRS. District-level estimates of cases correlated with cases reported by the Ministry of Health (Spearman's r=0.68, p<0.0001), but were considerably higher (40 166 418 cases estimated compared with 27 707 794 cases reported), indicating the potential for underreporting by the routine surveillance system. Modelling of counterfactual scenarios suggest that approximately 6.2 million cases were averted due to IRS across the study period in the 14 districts receiving IRS (estimated population 8 381 223). CONCLUSION: Outpatient information routinely collected by health systems can be a valuable source of data for mapping malaria burden. National Malaria Control Programmes may consider investing in robust surveillance systems within public health facilities as a low-cost, high benefit tool to identify vulnerable regions and track the impact of interventions.


Assuntos
Malária , Controle de Mosquitos , Humanos , Incidência , Uganda/epidemiologia , Estudos Transversais , Malária/epidemiologia , Instalações de Saúde
6.
Malar J ; 22(1): 38, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732769

RESUMO

BACKGROUND: In the Greater Mekong Subregion (GMS), forest-going populations are considered high-risk populations for malaria and are increasingly targeted by national control programmes' elimination efforts. A better understanding of forest-going populations' mobility patterns and risk associated with specific types of forest-going trips is necessary for countries in the GMS to achieve their objective of eliminating malaria by 2030. METHODS: Between March and November 2018, as part of a focal test and treat intervention (FTAT), 2,904 forest-goers were recruited in southern Lao PDR. A subset of forest-goers carried an "i-Got-U" GPS logger for roughly 2 months, configured to collect GPS coordinates every 15 to 30 min. The utilization distribution (UD) surface around each GPS trajectory was used to extract trips to the forest and forest-fringes. Trips with shared mobility characteristics in terms of duration, timing and forest penetration were identified by a hierarchical clustering algorithm. Then, clusters of trips with increased exposure to dominant malaria vectors in the region were further classified as high-risk. Finally, gradient boosting trees were used to assess which of the forest-goers' socio-demographic and behavioural characteristics best predicted their likelihood to engage in such high-risk trips. RESULTS: A total of 122 forest-goers accepted carrying a GPS logger resulting in the collection of 803 trips to the forest or forest-fringes. Six clusters of trips emerged, helping to classify 385 (48%) trips with increased exposure to malaria vectors based on high forest penetration and whether the trip happened overnight. Age, outdoor sleeping structures and number of children were the best predictors of forest-goers' probability of engaging in high-risk trips. The probability of engaging in high-risk trips was high (~ 33%) in all strata of the forest-going population. CONCLUSION: This study characterized the heterogeneity within the mobility patterns of forest-goers and attempted to further segment their role in malaria transmission in southern Lao People's Democratic Republic (PDR). National control programmes across the region can leverage these results to tailor their interventions and messaging to high-risk populations and accelerate malaria elimination.


Assuntos
Malária , Criança , Humanos , Laos , Malária/epidemiologia , Fatores de Risco , Florestas
7.
BMJ Open ; 12(6): e049050, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738650

RESUMO

OBJECTIVES: To estimate the cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in a low endemic setting. SETTING: The study was part of a 2×2 factorial design cluster randomised controlled trial within the catchment area of 11 primary health facilities in Zambezi, Namibia. PARTICIPANTS: Cost and outcome data were collected from the trial, which included 8948 community members that received interventions due to their residence within 500 m of malaria index cases. OUTCOME MEASURES: The primary outcome was incremental cost effectiveness ratio (ICER) per in incident case averted. ICER per prevalent case and per disability-adjusted life years (DALY) averted were secondary outcomes, as were per unit interventions costs and personnel time. Outcomes were compared as: (1) rfMDA versus RACD, (2) RAVC versus no RAVC and (3) rfMDA+RAVC versus RACD only. RESULTS: rfMDA cost 1.1× more than RACD, and RAVC cost 1.7× more than no RAVC. Relative to RACD only, the cost of rfMDA+RAVC was double ($3082 vs $1553 per event). The ICERs for rfMDA versus RACD, RAVC versus no RAVC and rfMDA+RAVC versus RACD only were $114, $1472 and $842, per incident case averted, respectively. Using prevalent infections and DALYs as outcomes, trends were similar. The median personnel time to implement rfMDA was 20% lower than for RACD (30 vs 38 min per person). The median personnel time for RAVC was 34 min per structure sprayed. CONCLUSION: Implemented alone or in combination, rfMDA and RAVC were cost effective in reducing malaria incidence and prevalence despite higher implementation costs in the intervention compared with control arms. Compared with RACD, rfMDA was time saving. Cost and time requirements for the combined intervention could be decreased by implementing rfMDA and RAVC simultaneously by a single team. TRIAL REGISTRATION NUMBER: NCT02610400; Post-results.


Assuntos
Malária , Administração Massiva de Medicamentos , Análise Custo-Benefício , Humanos , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Namíbia/epidemiologia , Projetos de Pesquisa
8.
Int J Epidemiol ; 51(5): 1489-1501, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35301532

RESUMO

BACKGROUND: Malaria is a risk factor for adverse pregnancy outcomes. Indoor residual spraying with insecticide (IRS) reduces malaria infections, yet the effects of IRS on pregnancy outcomes are not well established. We evaluated the impact of a large-scale IRS campaign on pregnancy outcomes in Eastern Uganda. METHODS: Birth records (n = 59 992) were obtained from routine surveillance data at 25 health facilities from five districts that were part of the IRS campaign and six neighbouring control districts ∼27 months before and ∼24 months after the start of the campaign (January 2013-May 2017). Campaign effects on low birthweight (LBW) and stillbirth incidence were estimated using the matrix completion method (MC-NNM), a machine-learning approach to estimating potential outcomes, and compared with the difference-in-differences (DiD) estimator. Subgroup analyses were conducted by HIV and gravidity. RESULTS: MC-NNM estimates indicated that the campaign was associated with a 33% reduction in LBW incidence: incidence rate ratio (IRR) = 0.67 [95% confidence interval (CI): 0.49-0.93)]. DiD estimates were similar to MC-NNM [IRR = 0.69 (0.47-1.01)], despite a parallel trends violation during the pre-IRS period. The campaign was not associated with substantial reductions in stillbirth incidence [IRRMC-NNM = 0.94 (0.50-1.77)]. HIV status modified the effects of the IRS campaign on LBW [ßIRSxHIV = 0.42 (0.05-0.78)], whereby HIV-negative women appeared to benefit from the campaign [IRR = 0.70 (0.61-0.81)], but not HIV-positive women [IRR = 1.12 (0.59-2.12)]. CONCLUSIONS: Our results support the effectiveness of the campaign in Eastern Uganda based on its benefit to LBW prevention, though HIV-positive women may require additional interventions. The IRS campaign was not associated with a substantively lower stillbirth incidence, warranting further research.


Assuntos
Inseticidas , Malária , Progressão da Doença , Feminino , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Gravidez , Natimorto/epidemiologia , Uganda/epidemiologia
9.
PLoS Negl Trop Dis ; 16(3): e0010273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275911

RESUMO

Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.


Assuntos
Tracoma , Antibacterianos/uso terapêutico , Azitromicina , Criança , Pré-Escolar , Chlamydia trachomatis , Etiópia/epidemiologia , Humanos , Lactente , Recém-Nascido , Prevalência , Estudos Soroepidemiológicos , Tracoma/prevenção & controle
10.
Malar J ; 21(1): 5, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983550

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the main vector control tool for pregnant women, but their efficacy may be compromised, in part, due to pyrethroid resistance. In 2017, the Ugandan Ministry of Health embedded a cluster randomized controlled trial into the national LLIN campaign, where a random subset of health subdistricts (HSDs) received LLINs treated with piperonyl butoxide (PBO), a chemical synergist known to partially restore pyrethroid sensitivity. Using data from a small, non-randomly selected subset of HSDs, this secondary analysis used quasi-experimental methods to quantify the overall impact of the LLIN campaign on pregnancy outcomes. In an exploratory analysis, differences between PBO and conventional (non-PBO) LLINs on pregnancy outcomes were assessed. METHODS: Birth registry data (n = 39,085) were retrospectively collected from 21 health facilities across 12 HSDs, 29 months before and 9 months after the LLIN campaign (from 2015 to 2018). Of the 12 HSDs, six received conventional LLINs, five received PBO LLINs, and one received a mix of conventional and PBO LLINs. Interrupted time-series analyses (ITSAs) were used to estimate changes in monthly incidence of stillbirth and low birthweight (LBW; <2500 g) before-and-after the campaign. Poisson regression with robust standard errors modeled campaign effects, adjusting for health facility-level differences, seasonal variation, and time-varying maternal characteristics. Comparisons between PBO and conventional LLINs were estimated using difference-in-differences estimators. RESULTS: ITSAs estimated the campaign was associated with a 26% [95% CI: 7-41] reduction in stillbirth incidence (incidence rate ratio (IRR) = 0.74 [0.59-0.93]) and a 15% [-7, 33] reduction in LBW incidence (IRR=0.85 [0.67-1.07]) over a 9-month period. The effect on stillbirth incidence was greatest for women delivering 7-9 months after the campaign (IRR=0.60 [0.41-0.87]) for whom the LLINs would have covered most of their pregnancy. The IRRs estimated from difference-in-differences analyses comparing PBO to conventional LLINs was 0.78 [95% CI: 0.52, 1.16] for stillbirth incidence and 1.15 [95% CI: 0.87, 1.52] for LBW incidence. CONCLUSIONS: In this region of Uganda, where pyrethroid resistance is high, this study found that a mass LLIN campaign was associated with reduced stillbirth incidence. Effects of the campaign were greatest for women who would have received LLINs early in pregnancy, suggesting malaria protection early in pregnancy can have important benefits that are not necessarily realized through antenatal malaria services. Results from the exploratory analyses comparing PBO and conventional LLINs on pregnancy outcomes were inconclusive, largely due to the wide confidence intervals that crossed the null. Thus, future studies with larger sample sizes are needed.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , Resultado da Gravidez/epidemiologia , Adulto , Feminino , Humanos , Análise de Séries Temporais Interrompida , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos , Gravidez , Estudos Retrospectivos , Uganda , Adulto Jovem
11.
medRxiv ; 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341804

RESUMO

Accurate tracing of epidemic spread over space enables effective control measures. We examined three metrics of infection and disease in a pediatric cohort (N≈3,000) over two chikungunya and one Zika epidemic, and in a household cohort (N=1,793) over one COVID-19 epidemic in Managua, Nicaragua. We compared spatial incidence rates (cases/total population), infection risks (infections/total population), and disease risks (cases/infected population). We used generalized additive and mixed-effects models, Kulldorf's spatial scan statistic, and intracluster correlation coefficients. Across different analyses and all epidemics, incidence rates considerably underestimated infection and disease risks, producing large and spatially non-uniform biases distinct from biases due to incomplete case ascertainment. Infection and disease risks exhibited distinct spatial patterns, and incidence clusters inconsistently identified areas of either risk. While incidence rates are commonly used to infer infection and disease risk in a population, we find that this can induce substantial biases and adversely impact policies to control epidemics.

12.
JAMA Netw Open ; 4(7): e2115530, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228128

RESUMO

Importance: Travel distance to abortion services varies widely in the US. Some evidence shows travel distance affects use of abortion care, but there is no national analysis of how abortion rate changes with travel distance. Objective: To examine the association between travel distance to the nearest abortion care facility and the abortion rate and to model the effect of reduced travel distance. Design, Setting, and Participants: This cross-sectional geographic analysis used 2015 data on abortions by county of residence from 1948 counties in 27 states. Abortion rates were modeled using a spatial Poisson model adjusted for age, race/ethnicity, marital status, educational attainment, household poverty, nativity, and state abortion policies. Abortion rates for 3107 counties in the 48 contiguous states that were home to 62.5 million female residents of reproductive age (15-44 years) and changes under travel distance scenarios, including integration into primary care (<30 miles) and availability of telemedicine care (<5 miles), were estimated. Data were collected from April 2018 to October 2019 and analyzed from December 2019 to July 2020. Exposures: Median travel distance by car to the nearest abortion facility. Main Outcomes and Measures: US county abortion rate per 1000 female residents of reproductive age. Results: Among the 1948 counties included in the analysis, greater travel distances were associated with lower abortion rates in a dose-response manner. Compared with a median travel distance of less than 5 miles (median rate, 21.1 [range, 1.2-63.6] per 1000 female residents of reproductive age), distances of 5 to 15 miles (median rate, 12.2 [range, 0.5-23.4] per 1000 female residents of reproductive age; adjusted coefficient, -0.05 [95% CI, -0.07 to -0.03]) and 120 miles or more (median rate, 3.9 [range, 0-12.9] per 1000 female residents of reproductive age; coefficient, -0.73 [95% CI, -0.80 to -0.65]) were associated with lower rates. In a model of 3107 counties with 62.5 million female residents of reproductive age, 696 760 abortions were estimated (mean rate, 11.1 [range, 1.0-45.5] per 1000 female residents of reproductive age). If abortion were integrated into primary care, an additional 18 190 abortions (mean rate, 11.4 [range, 1.1-45.5] per 1000 female residents of reproductive age) were estimated. If telemedicine were widely available, an additional 70 920 abortions were estimated (mean rate, 12.3 [range, 1.4-45.5] per 1000 female residents of reproductive age). Conclusions and Relevance: These findings suggest that greater travel distances to abortion services are associated with lower abortion rates. The results indicate which geographic areas have insufficient access to abortion care. Modeling suggests that integrating abortion into primary care or making medication abortion care available by telemedicine may decrease unmet need.


Assuntos
Aborto Induzido/tendências , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Mapeamento Geográfico , Distanciamento Físico , Viagem/estatística & dados numéricos , Aborto Induzido/estatística & dados numéricos , Adolescente , Adulto , Instituições de Assistência Ambulatorial/organização & administração , Correlação de Dados , Estudos Transversais , Feminino , Humanos , Gravidez , Viagem/psicologia , Estados Unidos
13.
Sci Rep ; 11(1): 14816, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285321

RESUMO

Forest-going populations are key to malaria transmission in the Greater Mekong Sub-region (GMS) and are therefore targeted for elimination efforts. Estimating the size of this population is essential for programs to assess, track and achieve their elimination goals. Leveraging data from three cross-sectional household surveys and one survey among forest-goers, the size of this high-risk population in a southern province of Lao PDR between December 2017 and November 2018 was estimated by two methods: population-based household surveys and capture-recapture. During the first month of the dry season, the first month of the rainy season, and the last month of the rainy season, respectively, 16.2% [14.7; 17.7], 9.3% [7.2; 11.3], and 5.3% [4.4; 6.1] of the adult population were estimated to have engaged in forest-going activities. The capture-recapture method estimated a total population size of 18,426 [16,529; 20,669] forest-goers, meaning 61.0% [54.2; 67.9] of the adult population had engaged in forest-going activities over the 12-month study period. This study demonstrates two methods for population size estimation to inform malaria research and programming. The seasonality and turnover within this forest-going population provide unique opportunities and challenges for control programs across the GMS as they work towards malaria elimination.

14.
PLoS One ; 16(6): e0252690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170917

RESUMO

In areas of low and unstable transmission, malaria cases occur in populations with lower access to malaria services and interventions, and in groups with specific malaria risk exposures often away from the household. In support of the Namibian National Vector Borne Disease Program's drive to better target interventions based upon risk, we implemented a health facility-based case control study aimed to identify risk factors for symptomatic malaria in Zambezi Region, northern Namibia. A total of 770 febrile individuals reporting to 6 health facilities and testing positive by rapid diagnostic test (RDT) between February 2015 and April 2016 were recruited as cases; 641 febrile individuals testing negative by RDT at the same health facilities through June 2016 were recruited as controls. Data on socio-demographics, housing construction, overnight travel, use of malaria prevention and outdoor behaviors at night were collected through interview and recorded on a tablet-based questionnaire. Remotely-sensed environmental data were extracted for geo-located village residence locations. Multivariable logistic regression was conducted to identify risk factors and latent class analyses (LCA) used to identify and characterize high-risk subgroups. The majority of participants (87% of cases and 69% of controls) were recruited during the 2016 transmission season, an outbreak year in Southern Africa. After adjustment, cases were more likely to be cattle herders (Adjusted Odds Ratio (aOR): 4.46 95%CI 1.05-18.96), members of the police or other security personnel (aOR: 4.60 95%CI: 1.16-18.16), and pensioners/unemployed persons (aOR: 2.25 95%CI 1.24-4.08), compared to agricultural workers (most common category). Children (aOR 2.28 95%CI 1.13-4.59) and self-identified students were at higher risk of malaria (aOR: 4.32 95%CI 2.31-8.10). Other actionable risk factors for malaria included housing and behavioral characteristics, including traditional home construction and sleeping in an open structure (versus modern structure: aOR: 2.01 95%CI 1.45-2.79 and aOR: 4.76 95%CI: 2.14-10.57); cross border travel in the prior 30 days (aOR: 10.55 95%CI 2.94-37.84); and outdoor agricultural work at night (aOR: 2.09 95%CI 1.12-3.87). Malaria preventive activities were all protective and included personal use of an insecticide treated net (ITN) (aOR: 0.61 95%CI 0.42-0.87), adequate household ITN coverage (aOR: 0.63 95%CI 0.42-0.94), and household indoor residual spraying (IRS) in the past year (versus never sprayed: (aOR: 0.63 95%CI 0.44-0.90). A number of environmental factors were associated with increased risk of malaria, including lower temperatures, higher rainfall and increased vegetation for the 30 days prior to diagnosis and residing more than 5 minutes from a health facility. LCA identified six classes of cases, with class membership strongly correlated with occupation, age and select behavioral risk factors. Use of ITNs and IRS coverage was similarly low across classes. For malaria elimination these high-risk groups will need targeted and tailored intervention strategies, for example, by implementing alternative delivery methods of interventions through schools and worksites, as well as the use of specific interventions that address outdoor transmission.


Assuntos
Malária Falciparum/prevenção & controle , Ocupações/estatística & dados numéricos , Estações do Ano , Viagem/estatística & dados numéricos , Adolescente , Adulto , Fatores Etários , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Namíbia/epidemiologia , Ocupações/classificação , Plasmodium falciparum/fisiologia , Fatores de Risco , Fatores Sexuais , Inquéritos e Questionários , Adulto Jovem
15.
ACR Open Rheumatol ; 3(5): 349-354, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33932146

RESUMO

OBJECTIVE: To determine factors associated with diagnostic delays and outcomes in juvenile dermatomyositis (JDM) in the Childhood Arthritis and Rheumatology Research Alliance Legacy Registry (CLR). METHODS: This was a cross-sectional study of subjects aged 0 to 17 years with JDM enrolled to the CLR from 2010 to 2015. Access to care was measured by calculating the distance from the subject zip code of residence to the treating pediatric rheumatology center and determining the state density of pediatric rheumatologists based on the 2015 American College of Rheumatology Workforce Study. Delay was categorized as early (<30 days), typical (1-3 months), moderate (3-12 months), and severe (>12 months). Ordered generalized additive models were used to determine the association between these measures and diagnostic delays. RESULTS: The median time to diagnosis was 3.1 months; 37.2% of patients experienced moderate delays, and 14.6% experienced severe delays. In a univariate analysis, younger age of disease onset and male sex were associated with delays. Using a generalized additive model accounting for age, sex, race, and ethnicity, increasing distance from treating pediatric rheumatologist and younger age at disease onset were associated with diagnostic delay. There was no association between the state density of rheumatologists and diagnostic delays in this model. CONCLUSION: In the CLR, we found moderate to severe diagnostic delays in the majority of subjects with JDM. Our data suggest that access to care, measured as the distance traveled to treating rheumatologist, is an important factor associated with delays in care but also highlight age as a contributing factor, suggesting that JDM may be less recognizable in young children.

16.
Elife ; 102021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33686939

RESUMO

As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on reducing forest-related transmission, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases confirmed malaria case incidence in Lao People's Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria transmission in the GMS.


Biting mosquitos spread the malaria parasite to humans. Along the Mekong River in Southeast Asia, spending time in the surrounding forest increases a person's risk of malaria. This has led to a debate about whether deforestation in this area, which is called the Greater Mekong Sub-region (GMS), will increase or decrease malaria transmission. The answer to the debate is not clear because some malaria-transmitting mosquitos thrive in heavily forested areas, in particular in the GMS, while others prefer less forested areas. Scientists studying malaria in the Amazon in South America suspect that malaria transmission increases shortly after deforestation but decreases six to eight years later. Some studies have tested this 'frontier malaria' theory but the results have been conflicting. Fewer studies have tested this theory in Southeast Asia. But deforestation has been blamed for recent malaria outbreaks in the GMS. Using data on malaria testing and forest cover in the GMS, Rerolle et al. show that deforestation around villages increases malaria transmission in the first two years and decreases malaria rates later. This trend was driven mostly by a type of malaria called Plasmodium falciparum and was less strong for Plasmodium vivax. The location of deforested areas also mattered. Deforestation within one to 10 kilometer of villages did not affect malaria rates. Deforestation further away in about a 30 kilometer radius did affect malaria transmission. Rerolle et al. suggest this may be because villagers have to spend longer times trekking through forests to hunt or harvest wood when the wider area is deforested. Currently, National Malaria Control Programs in the GMS focus their efforts on reducing forest-related transmission. This study strengthens the evidence supporting this approach. The results also suggest that different malaria elimination strategies may be necessary for different types of malaria parasite. Using this new information could help malaria control programs better target resources or educate villagers on how to protect themselves. The innovative methods used by Rerolle et al. reveal a more complex role of deforestation in malaria transmission and may inspire other scientists to think more carefully about environmental drivers of malaria.


Assuntos
Conservação dos Recursos Naturais , Florestas , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Humanos , Incidência , Laos/epidemiologia
17.
Sci Rep ; 10(1): 20570, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239779

RESUMO

The global elimination of lymphatic filariasis (LF) is a major focus of the World Health Organization. One key challenge is locating residual infections that can perpetuate the transmission cycle. We show how a targeted sampling strategy using predictions from a geospatial model, combining random forests and geostatistics, can improve the sampling efficiency for identifying locations with high infection prevalence. Predictions were made based on the household locations of infected persons identified from previous surveys, and environmental variables relevant to mosquito density. Results show that targeting sampling using model predictions would have allowed 52% of infections to be identified by sampling just 17.7% of households. The odds ratio for identifying an infected individual in a household at a predicted high risk compared to a predicted low risk location was 10.2 (95% CI 4.2-22.8). This study provides evidence that a 'one size fits all' approach is unlikely to yield optimal results when making programmatic decisions based on model predictions. Instead, model assumptions and definitions should be tailored to each situation based on the objective of the surveillance program. When predictions are used in the context of the program objectives, they can result in a dramatic improvement in the efficiency of locating infected individuals.


Assuntos
Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Filariose Linfática/transmissão , Aedes , Animais , Anticorpos Anti-Helmínticos/análise , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/análise , Antígenos de Helmintos/imunologia , Brugia Malayi/patogenicidade , Reservatórios de Doenças , Monitoramento Epidemiológico , Características da Família , Humanos , Insetos Vetores , Aprendizado de Máquina , Prevalência , Samoa/epidemiologia , Wuchereria bancrofti/patogenicidade
18.
Sci Rep ; 10(1): 10939, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616757

RESUMO

The identification of disease hotspots is an increasingly important public health problem. While geospatial modeling offers an opportunity to predict the locations of hotspots using suitable environmental and climatological data, little attention has been paid to optimizing the design of surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to identify hotspot locations where prevalence exceeds a relevant threshold. Our approach incorporates ideas from Bayesian optimization theory to adaptively select sample batches. We present an experimental simulation study based on survey data of schistosomiasis and lymphatic filariasis across four countries. Results across all scenarios explored show that adaptive sampling produces superior results and suggest that similar performance to random sampling can be achieved with a fraction of the sample size.

19.
Lancet ; 395(10233): 1361-1373, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334702

RESUMO

BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/prevenção & controle , Administração Massiva de Medicamentos/métodos , Controle de Mosquitos , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Análise por Conglomerados , Humanos , Malária Falciparum/epidemiologia , Controle de Mosquitos/métodos , Namíbia/epidemiologia , Plasmodium falciparum , Estudos Soroepidemiológicos
20.
Spat Spatiotemporal Epidemiol ; 32: 100307, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007281

RESUMO

Neighborhood characteristics and the built environment are important determinants in shaping health inequalities. We evaluate the role of a retail density ordinance in reducing concentration of tobacco stores based on neighborhood characteristics and land use pattern in San Francisco. The study evaluated the spatial distribution of tobacco retailers before and after the ordinance to identify geographic pockets where the most significant reduction had occurred. A generalized additive model was applied to assess the association between the location of the closure of tobacco retailer and socio-demographic characteristics and land use pattern. We did not find a meaningful change in the overall concentration of retailers based on neighborhood income and ethnicity but found a significant association based on patterns of land use. Our findings suggest that future polices must account for the differential distribution of retailers based on land use mix to lower concentration in areas where it is needed the most.


Assuntos
Comércio/legislação & jurisprudência , Características de Residência , Produtos do Tabaco/economia , Humanos , São Francisco , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...