Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6618): 417-421, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302020

RESUMO

We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.

2.
Bull Seismol Soc Am ; 111(6): 2982-3002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35001979

RESUMO

The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars, has been providing direct information on Martian interior structure and dynamics of that planet since it landed. Compared to seismic recordings on Earth, ground motion measurements acquired by SEIS on Mars are made under dramatically different ambient noise conditions, but include idiosyncratic signals that arise from coupling between different InSight sensors and spacecraft components. This work is to synthesize what is known about these signal types, illustrate how they can manifest in waveforms and noise correlations, and present pitfalls in structural interpretations based on standard seismic analysis methods. We show that glitches, a type of prominent transient signal, can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such as lander modes which are affected by variations in temperature and wind conditions over the course of the Martian Sol, can also contaminate ambient noise results. Therefore, both types of signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that signal processing in the presence of identified nonseismic signals must be informed by an understanding of the underlying physical processes in order for high fidelity waveforms of ground motion to be extracted. While the origins of most idiosyncratic signals are well understood, the 2.4 Hz resonance remains debated and the literature does not contain an explanation of its fine spectral structure. Even though the selection of idiosyncratic signal types discussed in this paper may not be exhaustive, we provide guidance on best practices for enhancing the robustness of structural interpretations.

3.
Agnes Karll Schwest Krankenpfleger ; 23(2): 51-2, 1969 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-5192790
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...