Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 6653-6664, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38267016

RESUMO

Attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful method for probing interfacial chemical processes. However, SEIRAS-active nanostructured metallic thin films for the in situ analysis of electrochemical phenomena are often unstable under biased aqueous conditions. In this work, we present a surface-enhancing structure based on etched black Si internal reflection elements with Au-coatings for in situ electrochemical ATR-SEIRAS. Using electrochemical potential-dependent adsorption and desorption of 4-methoxypyridine on Au, we demonstrate that black Si-based substrates offer advantages over commonly used structures, such as electroless-deposited Au on Si and electrodeposited Au on ITO-coated Si, due to the combination of high stability, sensitivity, and conductivity. These characteristics are especially valuable for time-resolved measurements where stable substrates are required over extended times. Furthermore, the low sheet resistance of Au layers on black Si reduces the RC time constant of the electrochemical cell, enabling a significantly higher time resolution compared to that of traditional substrates. Thus, we employ black Si-based substrates in conjunction with rapid- and step-scan Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption and desorption kinetics of 4-methoxypyridine during in situ electrochemical potential steps. Adsorption is shown to be diffusion-limited, which allows for the determination of the mean molecular area in a fully established monolayer. Moreover, no significant changes in the peak ratios of vibrational modes with different orientations relative to the molecular axis are observed, suggesting a single adsorption mode and no alteration of the average molecular orientation during the adsorption process. Overall, this study highlights the enhanced performance of black Si-based substrates for both steady-state and time-resolved in situ electrochemical ATR-SEIRAS, providing a powerful platform for kinetic and mechanistic investigations of electrochemical interfaces.

2.
Nano Lett ; 23(15): 6920-6926, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499227

RESUMO

We demonstrate the epitaxial coating of GaN NWs with an epitaxial ZnO shell by atomic layer deposition at 300 °C. Scanning transmission electron microscopy proves a sharp and defect-free coherent interface. The strain in the core-shell structure due to the lattice mismatch and different thermal expansion coefficients of GaN and ZnO was analyzed using 4D-STEM strain mapping and Raman spectroscopy and compared to theoretical calculations. The results highlight the outstanding advantages of epitaxial shell growth using atomic layer deposition, e.g., conformal coating and precise thickness control.

3.
Langmuir ; 39(14): 5095-5106, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37010500

RESUMO

The combination of molecular catalysts and semiconductor substrates in hybrid heterogeneous photo- or electrocatalytic devices could yield synergistic effects that result in enhanced activity and long-term stability. The extent of synergy strongly depends on the electronic interactions and energy level alignment between the molecular states and the valence and conduction band of the substrate. These properties of hybrid interfaces are investigated for a model system composed of protoporphyrin IX (PPIX) as a stand-in for molecular catalysts and a variety of semiconductor substrates. Monolayers of PPIX are deposited using Langmuir-Blodgett deposition. Their morphology is studied in dependence of the deposition surface pressure to achieve a high-quality, dense coverage. By making use of ultraviolet-visible spectroscopy and ultraviolet photoelectron spectroscopy, the band alignment is determined by the vacuum level and incorporates an interface dipole of 0.4 eV independent of the substrate. The HOMO, LUMO, and LUMO+1 levels were determined to be at 5.6, 3.7, and 2.7 eV below the vacuum level, respectively. The quenching of PPIX photoluminescence in dependence of the potential gradient between excited state and electron affinity of the semiconductor substrates is overall in good agreement with electron transfer processes occurring at very fast time scales on the order of femtoseconds. Nevertheless, deviations from this model become apparent for narrower band gap semiconductors, which points to an additional relevance of other processes, such as energy transfer. These findings highlight the importance of matching the semiconductor to the molecular catalyst to prevent undesirable deactivation pathways.

5.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36669201

RESUMO

Nanostructures exhibit a large surface-to-volume ratio, which makes them sensitive to their ambient conditions. In particular, GaN nanowires and nanofins react to their environment as adsorbates influence their (opto-) electronic properties. Charge transfer between the semiconductor surface and adsorbed species changes the surface band bending of the nanostructures, and the adsorbates can alter the rate of non-radiative recombination in GaN. Despite the importance of these interactions with the ambient environment, the detailed adsorption mechanisms are still not fully understood. In this article, we present a systematic study concerning the environmental sensitivity of the electrical conductivity of GaN nanofins. We identify oxygen- and water-based adsorbates to be responsible for a quenching of the electrical current through GaN nanofins due to an increased surface band bending. Complementary contact potential difference measurements in controlled atmospheres on bulkm- andc-plane GaN reveal additional complexity with regard to water adsorption, for which surface dipoles might play an important role besides an increased surface depletion width. The sensitive reaction of the electrical parameters to the environment and surface condition underlines the necessity of a reproducible pre-treatment and/or surface passivation. The presented results help to further understand the complex adsorption mechanisms at GaN surfaces. Due to the sensitivity of the nanofin conductivity on the environment, such structures could perform well as sensing devices.

6.
J Am Chem Soc ; 143(46): 19505-19516, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766502

RESUMO

Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.

7.
Nanotechnology ; 32(49)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34399419

RESUMO

Due to their intrinsically large surface-to-volume ratio, nanowires and nanofins interact strongly with their environment. We investigate the role of the main air constituents nitrogen, oxygen and water on the efficiency of radiative recombination in GaN nanostructures as a function of different surface treatments and at temperatures up to 200 °C. Oxygen and water exposures exhibit a complex behavior as they can both act quenching and enhancing on the photoluminescence intensity dependent on the temperature. For oxygen, these characteristics are already observed for low concentrations of below 0.5% in nitrogen. While the photoluminescence intensity changes induced by oxygen occur independently of illumination, the influence of water is light-induced: it evolves within tens of seconds under ultraviolet light exposure and is heavily influenced by the nanostructure pre-treatment. In contrast to observations in dry atmospheres, water prevents a recovery of the photoluminescence intensity in the dark. Combined measurements of the electrical current through GaN nanofins and their photoluminescence intensity reveal the environmental influence on the interaction of non-radiative recombination processes and changes in the surface band bending of the nanostructures. Several investigated solvents show an enhancing effect on the PL intensity increase, peaking in c-hexane with a 26-fold increase after 6 min of light exposure. Stabilization of the PL intensity was achieved by a passivation of the GaN surface with GaxOy, and ZnO shells. Surprisingly, Al2O3coatings resulted in a highly instable PL intensity during the first minutes of illumination. Our findings reveal the high importance of controlled environmental conditions for the investigation of nanostructures, especially when aimed at their applications in the fields of environmental sensing, photo-catalysis and light-emitting diodes.

8.
Nanoscale Adv ; 3(13): 3835-3845, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133019

RESUMO

GaN-on-diamond is a promising route towards reliable high-power transistor devices with outstanding performances due to better heat management, replacing common GaN-on-SiC technologies. Nevertheless, the implementation of GaN-on-diamond remains challenging. In this work, the selective area growth of GaN nanostructures on cost-efficient, large-scale available heteroepitaxial diamond (001) substrates by means of plasma-assisted molecular beam epitaxy is investigated. Additionally, we discuss the influence of an AlN buffer on the morphology of the GaN nanostructures. The nanowires and nanofins are characterized by a very high selectivity and controllable dimensions. Low temperature photoluminescence measurements are used to evaluate their structural quality. The growth of two GaN crystal domains, which are in-plane rotated against each other by 30°, is observed. The favoring of a certain domain is determined by the off-cut direction of the diamond substrates. By X-ray diffraction we show that the GaN nanostructures grow perpendicular to the diamond surface on off-cut diamond (001) substrates, which is in contrast to the growth on diamond (111), where the nanostructures are aligned with the substrate lattice. Polarity-selective wet chemical etching and Kelvin probe force microscopy reveal that the GaN nanostructures grow solely in the Ga-polar direction. This is a major advantage compared to the growth on diamond (111) and enables the application of GaN nanostructures on cost-efficient diamond for high-power/high-frequency applications.

9.
ACS Omega ; 5(20): 11333-11341, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478221

RESUMO

Magnetic anisotropy critically determines the utility of magnetic nanocrystals (NCs) in new nanomagnetism technologies. Using angular-dependent electron magnetic resonance (EMR), we observe magnetic anisotropy in isotropically arranged NCs of a nonmagnetic material. We show that the shape of the EMR angular variation can be well described by a simple model that considers magnetic dipole-dipole interactions between dipoles randomly located in the NCs, most likely due to surface dangling bonds. The magnetic anisotropy results from the fact that the energy term arising from the magnetic dipole-dipole interactions between all magnetic moments in the system is dominated by only a few dipole pairs, which always have an anisotropic geometric arrangement. Our work shows that magnetic anisotropy may be a general feature of NC systems containing randomly distributed magnetic dipoles.

10.
Rev Sci Instrum ; 90(4): 044903, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043019

RESUMO

We extend the infrared thermography of thin materials for measurements of the full time response to homogeneous heating via illumination. We demonstrate that the thermal conductivity, the heat capacity, as well as the thermal diffusivity can be determined comparing the experimental data to finite difference simulations using a variety of test materials such as thin doped and undoped silicon wafers, sheets of steel, as well as gold and polymer films. We show how radiative cooling during calibration and measurement can be accounted for and that the effective emissivity of the material investigated can also be measured by the setup developed.

11.
Nanoscale ; 11(16): 7967-7975, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968077

RESUMO

Nanowire (NW) based devices for solar driven artificial photosynthesis have gained increasing interest in recent years due to the intrinsically high surface to volume ratio and the excellent achievable crystal qualities. However, catalytically active surfaces often suffer from insufficient stability under operational conditions. To gain a fundamental understanding of the underlying processes, the photochemical etching behavior of hexagonal and round GaN NWs in deionized water under illumination are investigated. We find that the crystallographic c-plane remains stable, whereas the m-planes are photochemically etched with rates up to 11 nm min-1, depending on the applied UV light intensity. By investigating nanowalls, we achieve control of the exposed crystallographic facets and find an enhanced stability of the a-plane compared to the m-plane. Photo-excited holes, which drift to the side facets due to the upward surface band bending in nominally n-type (not intentionally doped) GaN, are identified as the driving force of the process, which allows the development of concepts for the stabilization of the nanostructures. A geometrically enhanced absorption of periodic NW arrays is correlated with a dependence of the etch rate on the NW pitch and diameter. Further, we find selective photochemical etching of the NW base in the presence of sub-band gap illumination, which is attributed to defect-related absorption in this region. These results provide improved understanding of the roles of inhomogeneous defect distribution, light excitation profiles, and different surface facets on the photochemical stability of nanostructures and provide viable strategies for improving stabilities under light-driven reaction conditions.

12.
Nanoscale ; 11(10): 4578-4584, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809617

RESUMO

In this work, the selective area growth of GaN nanowalls and nanogrids on sapphire and GaN on sapphire by molecular beam epitaxy is investigated. We demonstrate the fabrication of homogeneous GaN nanowall arrays with different widths, distances and specific crystallographic side facets. Photoluminescence spectroscopy of as-grown GaN nanowalls reveals a high crystal quality and low defect density. Moreover, a distinct dependence of the nanowall width and the intensity of the donor-bound exciton emission on the crystal orientation of the sidewall facets is found and explained by different surface states for a-plane and m-plane GaN. The waveguide character of the GaN nanowalls, given by the large refractive index of GaN and the subwavelength size of the structures, is analysed by experimental transmission measurements and numerical simulations. Our results and the high epitaxial control achieved by selective area growth show the potential of tailor-made nanowall-based devices, e.g., in photocatalysis or nanofluidics.

13.
Langmuir ; 35(9): 3272-3283, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735621

RESUMO

Label-free detection of charged biomolecules, such as DNA, has experienced an increase in research activity in recent years, mainly to obviate the need for elaborate and expensive pretreatments for labeling target biomolecules. A promising label-free approach is based on the detection of changes in the electrical surface potential on biofunctionalized silicon field-effect devices. These devices require a reliable and selective immobilization of charged biomolecules on the device surface. In this work, self-assembled monolayers of phosphonic acids are used to prepare organic interfaces with a high density of peptide nucleic acid (PNA) bioreceptors, which are a synthetic analogue to DNA, covalently bound either in a multidentate (∥PNA) or monodentate (⊥PNA) fashion to the underlying silicon native oxide surface. The impact of the PNA bioreceptor orientation on the sensing platform's surface properties is characterized in detail by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Our results suggest that the multidentate binding of the bioreceptor via attachment groups at the γ-points along the PNA backbone leads to the formation of an extended, protruding, and netlike three-dimensional metastructure. Typical "mesh" sizes are on the order of 8 ± 2.5 nm in diameter, with no preferential spatial orientation relative to the underlying surface. Contrarily, the monodentate binding provides a spatially more oriented metastructure comprising cylindrical features, of a typical size of 62 ± 23 × 12 ± 2 nm2. Additional cyclic voltammetry measurements in a redox buffer solution containing a small and highly mobile Ru-based complex reveal strikingly different insulating properties (ion diffusion kinetics) of these two PNA systems. Investigation by electrochemical impedance spectroscopy confirms that the binding mode has a significant impact on the electrochemical properties of the functional PNA layers represented by detectable changes of the conductance and capacitance of the underlying silicon substrate in the range of 30-50% depending on the surface organization of the bioreceptors in different bias potential regimes.


Assuntos
Ácidos Nucleicos Peptídicos/química , Espectroscopia Dielétrica , Capacitância Elétrica , Condutividade Elétrica , Técnicas Eletroquímicas , Ácidos Nucleicos Imobilizados/química , Microscopia de Força Atômica , Organofosfonatos/química , Silício/química , Propriedades de Superfície
14.
Phys Chem Chem Phys ; 21(3): 1491-1496, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30607405

RESUMO

As the conduction band edge of rutile is close to the reduction potential of hydrogen, there is a long-lasting discussion on whether molecular hydrogen can be evolved from this semiconductor. Our study on methanol photoreforming in the ultra-high vacuum reveals that photocatalysts comprising a TiO2(110) single crystal decorated with platinum clusters indeed enable the evolution of H2. This is attributed to a new type of mechanism, in which the co-catalyst acts as a recombination center for hydrogen and not as a reduction site of a photoreaction. This mechanism is an alternative pathway to the commonly used mechanism derived from photoelectrochemistry and must particularly be considered for systems, in which reducible semiconductors enable the surface diffusion of hydrogen species.

15.
Nano Lett ; 18(6): 3651-3660, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29792713

RESUMO

Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.

16.
Nanoscale ; 10(17): 8042-8057, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670986

RESUMO

The exploitation of semiconductor nanocrystal (NC) films in novel electronic and optoelectronic applications requires a better understanding of charge transport in these systems. Here, we develop a model of charge transport in NC films, based on a generalization of the concept of transport energy level ET to nanocrystal assemblies, which considers both intra- and inter-NC charge transfer processes. We conclude that the role played by each of these processes can be probed from temperature-dependent measurements of charge carrier density n and mobility µ in the same films. The model also enables the determination of the position of the Fermi energy level EF with respect to ET, an important parameter of charge transport in semiconductor materials, from the temperature dependence of n. Moreover, we provide support to an essentially temperature-independent intra-NC charge carrier mobility, considered in the transport level concept, and consequently the frequently observed temperature dependence of the overall mobility µ in NC films results from a temperature variation of the inter-NC charge transport processes. Importantly, we also conclude that the temperature dependence of conductivity in NC films should result in general from a combination of temperature variations of both n and µ. By applying the model to solution-processed Si NC films, we conclude that transport within each NC is similar to that in amorphous Si (a-Si), with charges hopping along band tail states located below the conduction band edge. For Si NCs, we obtain values of ET - EF of ∼0.25 eV. The overall mobility µ in Si NC films is significantly further reduced with respect to that typically found in a-Si due to the additional transport constraints imposed by inter-NC transfer processes inherent to a nanoparticulate film. Our model accounting for inter- and intra-NC charge transport processes provides a simple and more general description of charge transport that can be broadly applied to films of semiconductor NCs.

17.
Nanotechnology ; 29(22): 225402, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513261

RESUMO

Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (µGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the µGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the µGF, ranging from a few micrometers to the millimeter scale. The resulting µGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the µGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the µGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm-3 and 0.16 F cm-2. The µGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the µGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.

18.
Langmuir ; 33(45): 13068-13076, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29058436

RESUMO

Colloidal dodecene-passivated silicon (Si) nanocrystals were dispersed in hexane or chloroform and deposited onto substrates as face-centered cubic superlattices by slowly evaporating the solvent. The uniformity of the nanocrystals enables extended order; however, the solvent and the evaporation protocol significantly influence the self-assembly process, determining the morphology of the films, the extent of order, and the superlattice orientation on the substrate. Chloroform yielded superlattices with step-flow growth morphologies and (111)SL, (100)SL, and (110)SL orientations. Hexane led to mostly island morphologies when evaporated at room temperature with exclusively (111)SL orientations. Higher evaporation temperatures led to more extensive step-flow deposition. A model for the surface diffusion of nanocrystals adsorbed on the superlattice surface is developed.

19.
J Chem Phys ; 147(12): 124704, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964022

RESUMO

In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

20.
Rev Sci Instrum ; 88(4): 044903, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456243

RESUMO

We demonstrate a simple and quick method for the measurement of the in-plane thermal conductance of thin films via steady-state IR thermography. The films are suspended above a hole in an opaque substrate and heated by a homogeneous visible light source. The temperature distribution of the thin films is captured via infrared microscopy and fitted to the analytical expression obtained for the specific hole geometry in order to obtain the in-plane thermal conductivity. For thin films of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate post-treated with ethylene glycol and of polyimide, we find conductivities of 1.0 W m-1 K-1 and 0.4 W m-1 K-1 at room temperature, respectively. These results are in very good agreement with literature values, validating the method developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...