Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed J ; : 100731, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677491

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula used to treat various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS: The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS: Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS: Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.

2.
Front Plant Sci ; 14: 1153710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056509

RESUMO

The selection of medicinal plants' chemical markers focuses on bioactivity as the primary goal, followed by the nature of secondary metabolites, their stability, and availability. However, herbal medicines are valued for their complex and holistic pharmacological effects. A correct chemical marker can be carefully selected by a systematic clarification of their chemical-biological relationships. In the current study, the multi-informative molecular networking (MIMN) approach was employed to construct the anti-inflammatory metabolomic pattern of a heat-clearing herb, Scrophularia ningpoensis Hemsl. (S. ningpoensis). The MIMN molecular families characterized by cinnamic acid glycosides showed a higher bioactivity score compared with the other two major chemical classes (iridoid glycosides and iridoid-cinnamic acid glycosides). The Global Natural Product Social Molecular Networking (GNPS) and Reaxys database were used to assist in the putative annotation of eighteen metabolites from the bioactive and non-bioactive molecular families. The anti-inflammatory validation step was based on the detection of reactive oxygen species (ROS) generation by activated human neutrophils. All compounds from the bioactive MIMN molecular families dose-dependently inhibited the total ROS generation promoted by fMLF (IC50: 0.04-0.42 µM), while the compounds from non-bioactive MIMN clusters did not show any significant anti-inflammatory effect. The ROS-dependent anti-inflammatory activity of these cinnamic acid glycosides was attributed to their oxygen radical scavenging ability. The most abundant cinnamic acid glycoside, angoroside C (IC50: 0.34 µM) was suggested to be selected as a chemical marker for S. ningpoensis. In this study, the MIMN platform was applied to assist in the chemical marker selection of S. ningpoensis. The correct selection of markers will aid in the compilation and revision of herbal monographs and pharmacopeias resulting in the precise analysis and classification of medicinal plants on a scientific basis.

3.
J Fungi (Basel) ; 9(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36675918

RESUMO

Antrodia cinnamomea (AC) is a precious medicinal fungus with numerous therapeutic benefits. Based on the color appearance of its fruiting bodies, AC can be divided into red AC (RAC), yellow AC (YAC), and white AC (WAC); however, the differences in their metabolomic profiles remain unknown. This study aimed to analyze the metabolomic profiles of three different AC phenotypes and examine their relationship to the color appearance of fruiting bodies. The results showed that although RAC, YAC, and WAC appear to have a relatively similar profile of index triterpenoids, their total triterpenoid contents were significantly different. Among the annotated triterpenoids, many of them were highly present in RAC but not in YAC and WAC, and the relative contents of the four ergostanes (antcamphin F, antcamphin L, antcin B, and antcin K) and one lanostane (versisponic acid D) were found to be significantly different among AC phenotypes. The metabolomic profiles of the AC fruiting bodies demonstrated a total of 140 metabolites, and 41 of them were very different among AC phenotypes. This study indicates that red, yellow, and white AC can biosynthesize the diverse structures of triterpenoids, and RAC possesses a relatively higher contents of triterpenoids and diverse unannotated metabolites than YAC and WAC.

4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555103

RESUMO

Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobophytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of biscembranoid analogues in human neutrophils, motivating more chemical and biological explorations targeting these marine-derived natural products. In the current study, the chemical diversity of biscembranoids derived from the cultured-type Sarcophyton trocheliophorum von Marenzeller was illustrated through MS/MS molecular networking (MN) profiling approach. Based on the MN patterns, the prioritization of unknown biscembranoid derivatives was putatively analyzed. As a result, the biscembrane targeting isolation afforded two new metabolites, sarcotrochelides A (1) and B (2), along with six known analogues (3-8). Their structures and relative configurations were determined by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further investigated for all isolates based on reduced superoxide anion (O2•-) generation detections. Compounds 5-8 showed significant dose-dependently inhibitory effects, suggesting the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety and saturated γ-lactone ring in their reactive oxygen species (ROS)-dependent anti-inflammatory properties.


Assuntos
Antozoários , Diterpenos , Animais , Humanos , Espectrometria de Massas em Tandem , Antozoários/química , Superóxidos/metabolismo , Análise Espectral , Anti-Inflamatórios/química , Diterpenos/farmacologia , Estrutura Molecular
5.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139855

RESUMO

Lonicerae japonicae flos (LJ) is an Asian traditional herb that is used as a dietary supplement, tea, and beverage to clear heat and quench thirst. However, no studies investigated its effect on activated human neutrophils, which played a crucial role in the bad prognosis of coronavirus disease of 2019 (COVID-19) patients by aggravating lung inflammation and respiratory failure. Herein, we evaluated the anti-inflammatory effect of LJ ethanol extract (LJEE) on human neutrophils activated by N-formyl-methionyl-leucyl-phenylalanine (fMLF). Our experimental results indicated that LJEE suppressed fMLF-activated superoxide anion (O2•-) generation, the expression of CD11b, and cell adhesion and migration, as well as the formation of neutrophil extracellular traps in human neutrophils. Further in-depth mechanical investigation revealed that pretreatment with LJEE accelerated the Ca2+ clearance, but did not affect the phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) in activated human neutrophils. In addition, LJEE displayed a dose-dependent reactive oxygen species (ROS) scavenger activity, which assisted its anti-inflammatory activity. From the bioassay-coupled chromatographic profile, chlorogenic acids were found to dominate the anti-inflammatory effects of LJEE. Moreover, LJ water extract (LJWE) demonstrated an interrupting effect on the severe acute respiratory syndrome coronavirus-2 spike protein (SARS-CoV-2-Spike)/angiotensin-converting enzyme 2 (ACE2) binding. In conclusion, the obtained results not only supported the traditional use of LJ for heat-clearance, but also suggested its potential application in daily health care during the COVID-19 pandemic.

6.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889335

RESUMO

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Assuntos
Alcaloides , Evodia , Quinolonas , Alcaloides/análise , Alcaloides/farmacologia , Cromatografia Líquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Extratos Vegetais/química , Quinolonas/análise , Espectrometria de Massas em Tandem
7.
Methods Mol Biol ; 2505: 45-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732935

RESUMO

The surface-assisted laser desorption/ionization (SALDI) technique uses inorganic materials to aid desorption and ionization of molecules. SALDI is suitable for analyzing small molecules due to the absence of interfering signals in the low m/z range originating from the organic matrix. Imaging mass spectrometry (IMS) is a versatile imaging approach with high spatial resolution for analyzing various molecular species, but its application depends heavily on the ionization method. We have developed a functionalized titanium dioxide (TiO2) nanowire as a solid substrate for SALDI-MS detection of low-molecular-weight molecules. We apply this novel substrate for imprinting fragile specimens such as petals and further SALDI-IMS analysis. The TiO2 nanowire substrate is prepared from a commercial Ti plate by a hydrothermal process and subsequently chemically modified to improve the quality and selectivity of imprinting as well as the sensitivity of SALDI-IMS analysis. Here, the functionalized TiO2 nanowire substrate is applied to visualize the distribution of vinca alkaloids in the petal of Madagascar periwinkle (Catharanthus roseus).


Assuntos
Catharanthus , Alcaloides de Vinca , Diagnóstico por Imagem/métodos , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Metabolites ; 12(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35448507

RESUMO

The unmet need for specific anti-leukemic agents for the treatment of acute lymphoblastic leukemia led us to screen a variety of marine-derived bacteria. The fermentation broth extract of Streptomyces sp. LY1209 exhibited the most potent anti-proliferative effect against Molt 4 leukemia cells. A chromatographic anti-proliferative profiling approach was applied to characterize the metabolites with bioactive potential. Among all the metabolites, the major anti-leukemic constituents were staurosporine and a series of diketopiperazines (DKPs), including one novel and two known DKPs identified from nature for the first time. The structures of these compounds were identified using extensive spectroscopic analysis. The anti-proliferative potential of these metabolites against the Molt 4 cancer cell line was also determined. According to the in silico analysis utilizing a chemical global positioning system for natural products (ChemGPS-NP), it was suggested that these DKPs are potential anti-microtubule and alkylating agents, while staurosporine was proposed to be a tyrosine kinase inhibitor. Our findings not only identified a series of anti-proliferative metabolites, but also suggested a strategic workflow for the future discovery of natural product drug leads.

9.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408293

RESUMO

In clinical practice, the Ishak Score system would be adopted to perform the evaluation of the grading and staging of hepatitis according to whether portal areas have fibrous expansion, bridging with other portal areas, or bridging with central veins. Based on these staging criteria, it is necessary to identify portal areas and central veins when performing the Ishak Score staging. The bile ducts have variant types and are very difficult to be detected under a single magnification, hence pathologists must observe bile ducts at different magnifications to obtain sufficient information. This pathologic examinations in routine clinical practice, however, would result in the labor intensive and expensive examination process. Therefore, the automatic quantitative analysis for pathologic examinations has had an increased demand and attracted significant attention recently. A multi-scale inputs of attention convolutional network is proposed in this study to simulate pathologists' examination procedure for observing bile ducts under different magnifications in liver biopsy. The proposed multi-scale attention network integrates cell-level information and adjacent structural feature information for bile duct segmentation. In addition, the attention mechanism of proposed model enables the network to focus the segmentation task on the input of high magnification, reducing the influence from low magnification input, but still helps to provide wider field of surrounding information. In comparison with existing models, including FCN, U-Net, SegNet, DeepLabv3 and DeepLabv3-plus, the experimental results demonstrated that the proposed model improved the segmentation performance on Masson bile duct segmentation task with 72.5% IOU and 84.1% F1-score.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Ductos Biliares , Processamento de Imagem Assistida por Computador/métodos , Fígado
10.
Metabolites ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436473

RESUMO

Marine sponges have been recognized as a rich source of potential anti-proliferative metabolites. Currently, there are two sponge-derived anti-cancer agents (a macrolide and a nucleoside) isolated from the Porifera phylum, suggesting the great potential of this sponge as a rich source for anti-neoplastic agents. To search for more bioactive metabolites from this phylum, we examined the EtOAc extract of Theonella sp. sponge. We isolated seven compounds (1-7), including four 4-methylene sterols (1-4), two nucleosides (5 and 6), and one macrolide (7). Among them, theonellasterol L (1) was identified for the first time, while 5'-O-acetyl-2'-deoxyuridine (5) and 5'-O-acetylthymidine (6) were the first identified deoxyuridine and thymidine derivatives from the sponge Theonella sp. These structures were elucidated based on their spectroscopic data. The anti-proliferation activity of compounds 1-7 against the MCF-7, MDA-MB-231, T-47D, HCT-116, DLD-1, K562, and Molt 4 cancer cell lines was determined. The results indicated that the 14-/15-oxygenated moiety played an important role in the antiproliferative activity and the macrolide derivatives dominated the anti-proliferative effect of the sponge Theonella sp. The in silico analysis, using a chemical global positioning system for natural products (ChemGPS-NP), indicated an anti-proliferative mode of actions (MOA) suggesting the potential applications of the isolated active metabolites as anti-proliferative agents.

11.
J Food Biochem ; 45(4): e13694, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687093

RESUMO

Nondigestible polysaccharides are essential nutrients, which are also important bioactive constituents of mushrooms. This study aimed to investigate the physicochemical properties and anti-inflammatory effects of different polysaccharide components of Xylaria nigripes in lipopolysaccharides (LPS)-induced RAW264.7 macrophages. Results showed that X. nigripes nondigestible polysaccharide (XN) possessed a molecular weight of 910.7 kDa and mainly composed of glucose; it effectively suppressed NO, TNF-α, and IL-6 production. Based on molecular weight, two bioactive polysaccharide components (F1 and F2) were isolated from XN. F1 was a glucan with high molecular weight (885.2 kDa), whereas F2 was a low molecular weight heteropolysaccharide (24.5 kDa) composing of glucose, mannose, and galactose. F1 showed stronger inhibitory effects on NO, TNF-α, and IL-6 production than F2, however, its inhibitory effects were weaker than XN. Further analysis demonstrated that the combined treatment of F1 and F2 exhibited anti-inflammatory activity as good as XN, and they possessed synergistic effects on inhibiting pro-inflammatory mediator production. PRACTICAL APPLICATIONS: Polysaccharides are essential nutrients, and are major bioactive constituents of mushrooms. This study isolated two bioactive polysaccharide components from Xylaria nigripes, namely F1 and F2. F1 was a high molecular weight glucan, whereas F2 was a low molecular weight heteropolysaccharide. F1 showed stronger anti-inflammatory activity than F2, but was weaker than their combined treatment (F1 + F2). Different polysaccharide components were shown to possess synergistic anti-inflammatory effects, suggesting their importance in the formulation of polysaccharide-based products.


Assuntos
Polissacarídeos , Xylariales , Anti-Inflamatórios/farmacologia , Ascomicetos , Lipopolissacarídeos , Polissacarídeos/farmacologia
12.
Plant J ; 105(4): 1123-1133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220116

RESUMO

Imaging mass spectrometry (IMS) is a powerful technique that enables analysis of various molecular species at a high spatial resolution with low detection limits. In contrast to the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) approach, surface-assisted laser desorption/ionization (SALDI) can be more effective in the detection of small molecules due to the absence of interfering background signals in low m/z ranges. We developed a functionalized TiO2 nanowire as a solid substrate for IMS of low-molecular-weight species in plant tissues. We prepared TiO2 nanowires using an inexpensive modified hydrothermal process and subsequently functionalized them chemically with various silane analogs to overcome the problem of superhydrophilicity of the substrate. Chemical modification changed the selectivity of imprinting of samples deposited on the substrate surface and thus improved the detection limits. The substrate was applied to image distribution of the metabolites in very fragile specimens such as the petal of Catharanthus roseus. We observed that the metabolites are distributed heterogeneously in the petal, which is consistent with previous results reported for the C. roseus plant leaf and stem. The intermediates corresponding to the biosynthesis pathway of some vinca alkaloids were clearly shown in the petal. We also performed profiling of petals from five different cultivars of C. roseus plant. We verified the semi-quantitative capabilities of the imprinting/imaging approach by comparing results using the LC-MS analysis of the plant extracts. This suggested that the functionalized TiO2 nanowire substrate-based SALDI is a powerful technique complementary to MALDI-MS.


Assuntos
Catharanthus/metabolismo , Flores/metabolismo , Nanofios , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio , Alcaloides de Vinca/metabolismo , Metabolismo Secundário , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
13.
Glycoconj J ; 37(5): 565-576, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666338

RESUMO

ß-Linked polysaccharides including ß-glucans are well known to be important functional ingredients, and are known to possess immunomodulatory and anti-tumor activities. This study aimed to investigate the anti-inflammatory properties and participating receptor of water soluble and insoluble bioactive polysaccharides from Grifola frondosa (GFP, non-digestible water soluble polysaccharides), Laminaria digitata (laminarin, a water soluble ß-glucan) and Saccharomyces cerevisiae (zymosan, a water insoluble ß-glucan) in lipopolysaccharide (LPS)-stimulated parental and Dectin-1 highly expressing RAW264.7 macrophages. Results showed that GFP and laminarin significantly inhibited nitric oxide and prostaglandin E2 production, but only the GFP with high molecular weight exhibited strong inhibition on pro-inflammatory cytokine (TNF-α and IL-6) secretion in a concentration-dependent manner. The activation of NF-κB was also significantly down-regulated by GFP treatment as compared with cells treated with LPS alone. Although GFP and laminarin were able to bind to ß-glucan receptor Dectin-1, there was no relationship between the inhibitory potency and the content of ß-glucans in GFP, and these inhibitory effects were not affected by the expression level of Dectin-1 in macrophage cells. In contrast, zymosan significantly intensified LPS-induced inflammatory responses through Dectin-1. In conclusion, these results suggest that the inhibitory effects of water soluble polysaccharides on LPS-induced pro-inflammatory mediator production in murine macrophages may not involve ß-glucan receptor Dectin-1.


Assuntos
Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Polissacarídeos/química , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Polissacarídeos/biossíntese , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7
14.
J Nat Prod ; 83(2): 231-242, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31967822

RESUMO

Mushroom polysaccharides including ß-glucans possess various health-promoting properties and are known to be the major bioactive constituents of Grifola frondosa (GF), which is a popular edible and medicinal mushroom. Dectin-1, a pattern-recognition receptor, is responsible for recognizing ß-glucans. In this study, parental RAW264.7 macrophages and Dectin-1-expressing RAW264.7 macrophages were used to investigate the anti-inflammatory activity and receptor involvement of the water-soluble polysaccharides from GF. Results indicated that the high molecular weight fraction of GF (GF70-F1; 1260 kDa) inhibited TNF-α and IL-6 production as well as NF-κB activation in lipopolysaccharide-induced macrophages. Chemical and enzymatic linkage analyses indicated that GF70-F1 mainly contained the known (1→3),(1→6)-ß-d-glucan and a polysaccharide not previously isolated from GF, a nondigestible glucan with a ß-(1→4)-linked backbone and ß-(1→6)-linked branches. The ability of GF70-F1 to inhibit cytokine production was not affected by the expression level of Dectin-1 in cells, and a similar inhibitory activity was observed after removing the (1→3),(1→6)-ß-d-glucan from GF70-F1. Blockade of Toll-like receptor 2 (TLR2) but not Dectin-1 or complement receptor 3 (CR3) attenuated the inhibitory activity of GF70-F1. The nondigestible (1→6)-branched (1→4)-ß-d-glucan in GF70-F1 may contribute to the anti-inflammatory activity via interacting with TLR2 rather than Dectin-1 or CR3 receptors.


Assuntos
Citocinas/metabolismo , Glucanos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/química , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Agaricales/química , Animais , Citocinas/química , Glucanos/farmacologia , Grifola/química , Grifola/metabolismo , Lectinas Tipo C , Lipopolissacarídeos/química , Macrófagos/metabolismo , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/química , Fator de Necrose Tumoral alfa/química , beta-Glucanas/química , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia
15.
Int J Med Mushrooms ; 21(10): 995-1006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32450036

RESUMO

Cordyceps cicadae is a medicinal fungus popularly used in traditional Chinese medicine for treating cancer, asthma, and kidney diseases. In this study, crude polysaccharides (CP) and water-soluble nondigestible polysaccharides (NDPs) were prepared from the fruiting bodies of cultivated C. cicadae, and their physicochemical properties and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were examined. The results showed yields of CP and NDP of 3.42% and 1.17%, respectively. CP and NDP showed a similar monosaccharide composition, of which the predominant monosaccharide was mannose, followed by galactose and glucose. Differences in molecular weight distribution between CP and NDP were apparent; CP possessed two major (3.1 kDa and 21.5 kDa) and one minor (678.2 kDa) macromolecular populations, whereas NDP contained only one macromolecular population (24.4 kDa). Furthermore, CP but not NDP had a triple helix conformation. The bioassay results showed that, although both CP and NDP possess anti-inflammatory activity, NDP had stronger inhibitory effects on nitric oxide, IL-1ß, and TNF-α production in LPS-stimulated RAW264.7 macrophages. From this study, we conclude that the differences in conformation and molecular weight distribution between CP and NDP may contribute to their differences in anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Cordyceps/química , Carpóforos/química , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios/química , Produtos Biológicos/química , Interleucina-1beta/imunologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Medicina Tradicional Chinesa , Camundongos , Polissacarídeos/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/imunologia
16.
Int J Biol Macromol ; 116: 728-734, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29763701

RESUMO

Polysaccharides including ß-glucans are important bioactive components of mushroom. Xylaria nigripes is a popular medicinal fungus that has been used for treating trauma, insomnia and mental illness. This study examined the physicochemical characteristics and anti-inflammatory activities of water soluble non-digestible polysaccharides (TXNP and CXNP) from fruiting bodies of two cultivated X. nigripes strains (TXN and CXN). Results showed that both TXNP and CXNP possessed relatively similar FT-IR spectra. TXNP had a triple helix conformation and molecular weight of 853.8 kDa, whereas the molecular weight of CXNP was 14.7 kDa. The monosaccharide composition of TXNP was predominantly glucose, whereas CXNP contained xylose, mannose and glucose. Although both TXNP and CXNP dose-dependently suppressed the production of NO, IL-1ß, TNF-α and PGE2, as well as the expression of iNOS, COX-2 and NF-κB in the lipopolysaccharide-induced RAW264.7 macrophages, the potency of TXNP was stronger. This study reveals that under similar conditions of cultivation and extraction procedures, the different physicochemical characteristics of polysaccharides from TXN and CXN may have contributed to the differences in their anti-inflammatory potency.


Assuntos
Anti-Inflamatórios , Carpóforos/química , Polissacarídeos Fúngicos , Macrófagos/imunologia , Xylariales/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Mediadores da Inflamação/imunologia , Macrófagos/patologia , Camundongos , Células RAW 264.7
17.
Food Chem ; 220: 400-405, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27855917

RESUMO

This study examined the effects of different extraction temperatures (70°C, 100°C and 121°C) on the physicochemical properties of water soluble polysaccharides (WSP; GF70, GF100 and GF121, respectively) from Grifola frondosa (GF) fruiting bodies, and evaluating their effects on nitric oxide (NO) production in lipopolysaccharide-stimulated RAW264.7 macrophages. Results showed that GF121 had the highest yield. GF70, GF100 and GF121 contained a similar monosaccharide composition and the predominant monosaccharide was glucose. These polysaccharides contained two major macromolecular populations; the high molecular weight population showed a clear trend of reduced molecular weight with increasing extraction temperature. GF121 contained the highest amount of (1→3, 1→6)-ß-d-glucans, while the degree of branching in all samples was similar. GF WSP possessed NO inhibitory activity, and the strongest was GF121. This study concludes that WSP are good sources of food ingredients, and high temperature extraction could improve the quantity and quality of GF WSP.


Assuntos
Grifola/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Células Cultivadas , Glucanos/metabolismo , Grifola/crescimento & desenvolvimento , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Peso Molecular , Temperatura
18.
Appl Microbiol Biotechnol ; 100(10): 4385-93, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26743656

RESUMO

Mushroom polysaccharides have been known to possess various pharmacological activities. However, information on their chemical and biological differences between mushrooms remains limited. In this study, we aimed to examine the differences in physicochemical characteristics of polysaccharides prepared from Antrodia cinnamomea (AC-P), Coriolus versicolor (CV-P), Grifola frondosa (GF-P), Ganoderma lucidum (GL-P), and Phellinus linteus (PL-P), followed by evaluating their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Results showed that under similar conditions of preparation, the monosaccharide composition of polysaccharides varied between different mushrooms, and glucose was the predominant monosaccharide, followed by galactose and mannose. AC-P and GF-P contained the highest amount of (1,3;1,6)-ß-D-glucans. The degree of branching of (1,3;1,6)-ß-D-glucans in all polysaccharides ranged from 0.21 to 0.26, with the exception of GF-P (0.38). The molecular weights of different polysaccharides showed diverse distributions; AC-P, CV-P, and GF-P contained two major macromolecular populations (< 30 and >200 kDa) and possessed triple-helix conformation, whereas GL-P (10.2 kDa) and PL-P (15.5 kDa) only had a low molecular weight population without triple-helix structure. These polysaccharides showed different inhibitory potency on NO production in LPS-stimulated RAW264.7 cells.


Assuntos
Agaricales/química , Polissacarídeos/química , Animais , Antrodia/química , Basidiomycota/química , Grifola/química , Lipopolissacarídeos , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7 , Reishi/química , Trametes/química , beta-Glucanas/química
19.
Pharm Biol ; 53(5): 705-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25431253

RESUMO

CONTEXT: Consumption of medicinal mushrooms for disease prevention and maintaining health has a very long history in Asia. Grifola frondosa (Fr) S.F. Gray (GF) (Meripilaceae) is a medicinal fungus popularly used for enhancing immune systems, lowering blood glucose, and improving spleen, stomach, and nerve functions. OBJECTIVE: This study examines the hypoglycemic effects of GF in vitro and in vivo, and analyzes the chemical profiles of its bioactive components. MATERIALS AND METHODS: In vitro hypoglycemic effects of GF was evaluated enzymatically using α-amylase and α-glucosidase inhibition assays, whereas in vivo study was conducted on high-fat diet fed and streptozotocin (HFD + STZ)-induced hyperglycemic mice. GC-MS was used to determine the chemical profiles of bioactive components. RESULTS: The non-polar fraction of GF exhibited a stronger anti-α-glucosidase activity (IC50: 0.0332 mg/ml) than acarbose, but its anti-α-amylase activity (IC50: 0.671 mg/ml) was weaker. Oral administration of GF at 600 mg/kg (GF600) significantly lowered the blood glucose, HbA1c, average blood glucose, and serum total cholesterol levels in hyperglycemic mice. Although GF was found to contain mainly oleic acid and linoleic acid, their levels in the fungus were low, suggesting that the effects of GF on HFD + STZ-induced hyperglycemic mice could be due to factors other than these fatty acids. CONCLUSION: These results conclude that GF possesses anti-α-glucosidase activity, and hypoglycemic effect in HFD + STZ-induced hyperglycemic mice.


Assuntos
Fatores Biológicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Grifola , Hiperglicemia/tratamento farmacológico , Estreptozocina/toxicidade , Animais , Fatores Biológicos/isolamento & purificação , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
20.
J Agric Food Chem ; 61(51): 12604-11, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24313881

RESUMO

This study examined the changes of tocopherols (Toc), tocotrienols (T3), γ-oryzanol (GO), and γ-aminobutyric acid (GABA) contents in germinated brown rice (GBR) of pigmented and nonpigmented cultivars under different germination conditions. Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars. The pigmented GBR possessed higher total vitamin E, total Toc, total T3, and GO contents than the nonpigmented GBR; however, its level of GABA was lower. The order of the three highest vitamin E homologues in pigmented and nonpigmented GBR was γ-T3 > γ-Toc > α-Toc and α-Toc > γ-T3 > α-T3, respectively; ß-Toc, ß-T3, δ-Toc, and δ-T3 were present in only small amounts (≤1.0 mg/kg) in GBR of both cultivars. Although both cultivars showed an increase in GABA contents with increasing germination time, the GABA content in nonpigmented GBR was higher.


Assuntos
Oryza/química , Fenilpropionatos/análise , Sementes/crescimento & desenvolvimento , Tocoferóis/análise , Tocotrienóis/análise , Ácido gama-Aminobutírico/análise , Germinação , Oryza/classificação , Oryza/crescimento & desenvolvimento , Sementes/química , Sementes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...