Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28080-28092, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768255

RESUMO

A core-shell-shell sandwich material is developed with silver nanowires as the core, ZIF-8 as an inner shell, and gold nanoparticles as the outer shell, namely, Ag@ZIF-8@Au nanowires (AZA-NW). Then, the synthesized AZA-NW is transformed into a surface-enhanced Raman spectroscopy (SERS) sensor (named M-AZA) by the vacuum filtration method and used to enrich, detect, and inactivate traces of bacteria in the environment. The M-AZA sensor has three main functions: (1) trace bacteria are effectively enriched, with an enrichment efficiency of 91.4%; (2) ultrasensitive detection of trace bacteria is realized, with a minimum detectable concentration of 1 × 101 CFU/mL; (3) bacteria are effectively killed up to 92.4%. The shell thickness of ZIF-8 (5-75 nm) is controlled by adjusting the synthesis conditions. At an optimum shell thickness of 15 nm, the effect of gold nanoparticles and ZIF-8 shell on the sensor's stability, SERS activity, and antibacterial performance is investigated. The simulation of the SERS sensor using the finite difference time domain (FDTD) method is consistent with the experimental results, theoretically demonstrating the role of the gold nanoparticles and the ZIF-8 shell. The sensor also shows excellent stability, safety, and generalizability. The campus water sample is then tested on-site by the M-AZA SERS sensor, indicating its potential for practical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Nanofios , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Prata/química , Nanofios/química , Nanopartículas Metálicas/química , Zeolitas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação
2.
Anal Methods ; 16(14): 2085-2092, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511545

RESUMO

This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 µm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 µm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 102 CFU mL-1. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Prata/química , Óxido de Zinco/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Microfluídica , Bactérias
3.
J Hazard Mater ; 443(Pt B): 130326, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444054

RESUMO

Reasonable regulation of the micro-morphology of material can significantly enhance the related performance. Herein, bismuth tungstate (Bi2WO6, simplified as BWO) porous hollow spheres with flower-like surface were prepared successfully, and this unique morphology endowed BWO with improved photocatalytic performance by reflecting and absorbing the light multiple times inside the cavity. To inhibit the rapid recombination of photogenerated e--h+ pairs within BWO itself, black phosphorous quantum dots (BPQDs) were anchored onto the nanosheets of BWO sphere closely by a facile self-assembly process, which will not shade the pores of BWO owing to the small size of BPQDs, but the BP nanosheets have the chance to do that. The band gap of BPQDs expanded much after exfoliation due to the quantum confinement effects, which matched the energy band of BWO well to form S-scheme heterojunction, achieving more efficient separation of photogenerated charges. As a result, the BPQDs/BWO exhibited attractive photocatalytic performance in the degradation of amoxicillin (AMX) and other antibiotics. Besides, the operation conditions were optimized, specifically, 94.5 % of AMX (20 mg/L, 200 mL) can be removed in 60 min when 50 mg of 2BPQDs/BWO was used as catalyst with solution pH = 11. Moreover, a possible degradation pathway of AMX was proposed based on the detected intermediates.


Assuntos
Amoxicilina , Pontos Quânticos , Fósforo , Porosidade , Luz
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120818, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999358

RESUMO

The three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate for trace molecule detection has recently attracted considerable interest; however, these substrates generally either show poor sensitivity or require a complex preparation process. In this work, we have fabricated a 3D ZnO/Ag substrate using porous zeolite imidazole frameworks (ZIF-8) derived ZnO nanoparticles (NPs) followed by evaporation-induced self-assembly of Ag NPs over it, which can detect multiple environmental pollutants by a facile and cost-effective method. This 3D porous substrate showed an ultra-sensitivity for detecting various types of molecules, e.g., rhodamine 6G (R6G), crystal violet (CV), tetracycline, and thiram, simultaneously suggesting its generality. Notably, the lowest detectable concentration (LDC) attained for R6G is 10-13 M, and the enhancement factor (EF) reaches up to 1.8 × 108. The most important reason for ultra-sensitivity is that ZnO derived from ZIF-8 has a hierarchical porous structure and large surface area to provide more "hot spots" and absorb more probe molecules. Consequently, the ZnO/Ag nanostructures show excellent photocatalytic performance. The detected probe molecules could be completely degraded in situ within a short UV exposure time (<30 min), thereby enabling outstanding reusability of this substrate. Finite-different time-domain (FDTD) simulations were used to understand the underlying mechanism of the substrate by calculating electric fields and hot spot distributions. The simulations suggested that the widespread hot spots structures on the substrate are the main reason for its SERS ultra-sensitivity.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Nanoestruturas , Óxido de Zinco , Porosidade , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA