Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507298

RESUMO

BACKGROUND: Rice-based distillers' spent cake (RDSC), a by-product of the Chinese liquor (Baijiu) industry, is a potential source of angiotensin-converting enzyme (ACE) inhibitory peptide. Since ACE plays a crucial role in controlling hypertension, inhibition of ACE has been widely emphasized. The ACE inhibitory active peptide derived from by-products of food has been recognized as a safer and cheaper inhibitor. RESULTS: Aimed to discover ACE-inhibiting active peptides in RDSC. Hydrolysis of RDSC by alcalase for 4 h followed by ultrafiltration yielded low-molecular-weight (< 3 kDa) fractions. Subsequently, a comprehensive method using a combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) and LC-Q-Exactive-MS to identify the novel short peptides (3-5 amino acids residues; n = 7) and medium-sized peptides (more than 6 amino acids residues; n = 6). In vitro activity assay showed that the peptides KPFFPGL, GFPRPLL, GPPGVF, and VGK exhibited the highest activity with inhibitory concentration of 50% (IC50) of 11.63, 12.34, 19.55, and 33.54 µmol L-1. Molecular docking reveal that the active and inactive sites (Glu123, Asp121, Arg522, and Lys118) play important roles in enhancing the ACE inhibitory activity of peptides. CONCLUSION: Here we report a comprehensive method that effectively extracted and identified the bioactive peptides from RDSC. Four highly active novel peptides may be the most promising candidates for functional foods against hypertension, provide significant information for enhancing value of rice-based distilled by-products. © 2024 Society of Chemical Industry.

2.
RSC Adv ; 13(42): 29291-29307, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37809022

RESUMO

To comprehend impacts of moisture on exploring and producing shale gas, the rules of pseudo-in situ moisture occurrence in deep shales were revealed through low-pressure N2 adsorption and desorption, and CO2 adsorption measurements. The influences of pseudo-in situ moisture on CH4 adsorption/desorption in the shales were explored at 353.15 K and pressures up to 30 MPa by using the volumetric method. Results showed that the pseudo-in situ moisture content of the shales ranges between 0.57% and 0.94%, which positively correlates with clay mineral content but negatively correlates with organic matter and quartz. The clay minerals contribute more to moisture occurrence mainly via adsorption effect. The pores with the diameters of 1.10-4.10 nm of the shales serve as dominant space for accommodating moisture. Moreover, the pseudo-in situ moisture reduces saturated adsorption capacity and isosteric adsorption heat of CH4 on the shales, suggesting the weakened adsorption affinity toward CH4-shale system. Typically, the minor pseudo-in situ moisture could significantly weaken CH4 adsorption capability of the shales with low clay mineral content through blocking pore throats of organic matter-hosted pores. However, the abundant pseudo-in situ moisture only slightly reduces CH4 adsorption capability of the shales with high clay mineral content due to continuous distribution of organic matter-hosted pores. The aforementioned different roles are dominated by the difference in occurrence characteristics of organic matter-hosted pores and clay mineral-hosted pores between the shales with low clay mineral content and the shales with high clay mineral content. Furthermore, the pseudo-in situ moisture strengthens CH4 adsorption/desorption hysteresis on the shales associated with moisture uptake-induced clay mineral swelling, thereby raising difficulty for CH4 desorption from the shales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...