Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
JMIR Form Res ; 8: e53716, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018555

RESUMO

BACKGROUND: The early detection of respiratory infections could improve responses against outbreaks. Wearable devices can provide insights into health and well-being using longitudinal physiological signals. OBJECTIVE: The purpose of this study was to prospectively evaluate the performance of a consumer wearable physiology-based respiratory infection detection algorithm in health care workers. METHODS: In this study, we evaluated the performance of a previously developed system to predict the presence of COVID-19 or other upper respiratory infections. The system generates real-time alerts using physiological signals recorded from a smartwatch. Resting heart rate, respiratory rate, and heart rate variability measured during the sleeping period were used for prediction. After baseline recordings, when participants received a notification from the system, they were required to undergo testing at a Northwell Health System site. Participants were asked to self-report any positive tests during the study. The accuracy of model prediction was evaluated using respiratory infection results (laboratory results or self-reports), and postnotification surveys were used to evaluate potential confounding factors. RESULTS: A total of 577 participants from Northwell Health in New York were enrolled in the study between January 6, 2022, and July 20, 2022. Of these, 470 successfully completed the study, 89 did not provide sufficient physiological data to receive any prediction from the model, and 18 dropped out. Out of the 470 participants who completed the study and wore the smartwatch as required for the 16-week study duration, the algorithm generated 665 positive alerts, of which 153 (23.0%) were not acted upon to undergo testing for respiratory viruses. Across the 512 instances of positive alerts that involved a respiratory viral panel test, 63 had confirmed respiratory infection results (ie, COVID-19 or other respiratory infections detected using a polymerase chain reaction or home test) and the remaining 449 had negative upper respiratory infection test results. Across all cases, the estimated false-positive rate based on predictions per day was 2%, and the positive-predictive value ranged from 4% to 10% in this specific population, with an observed incidence rate of 198 cases per week per 100,000. Detailed examination of questionnaires filled out after receiving a positive alert revealed that physical or emotional stress events, such as intense exercise, poor sleep, stress, and excessive alcohol consumption, could cause a false-positive result. CONCLUSIONS: The real-time alerting system provides advance warning on respiratory viral infections as well as other physical or emotional stress events that could lead to physiological signal changes. This study showed the potential of wearables with embedded alerting systems to provide information on wellness measures.

2.
Chin J Cancer Res ; 36(3): 306-321, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988489

RESUMO

Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.

3.
Cell Rep ; 43(7): 114480, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003737

RESUMO

The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.

4.
Adv Drug Deliv Rev ; 212: 115387, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964543

RESUMO

Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.

5.
Front Public Health ; 12: 1366327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962768

RESUMO

Introduction: Enhancing the efficiency of primary healthcare services is essential for a populous and developing nation like China. This study offers a systematic analysis of the efficiency and spatial distribution of primary healthcare services in China. It elucidates the fundamental landscape and regional variances in efficiency, thereby furnishing a scientific foundation for enhancing service efficiency and fostering coordinated regional development. Methods: Employs a three-stage DEA-Malmquist model to assess the efficiency of primary healthcare services across 31 provincial units in mainland China from 2012 to 2020. Additionally, it examines the spatial correlation of efficiency distribution using the Moran Index. Results: The efficiency of primary healthcare services in China is generally suboptimal with a noticeable declining trend, highlighting significant potential for improvement in both pure technical efficiency and scale efficiency. There is a pronounced efficiency gap among provinces, yet a positive spatial correlation is evident. Regionally, efficiency ranks in the order of East > Central > West. Factors such as GDP per capita and population density positively influence efficiency enhancements, while urbanization levels and government health expenditures appear to have a detrimental impact. Discussion: The application of the three-stage DEA-Malmquist model and the Moran Index not only expands the methodological framework for researching primary healthcare service efficiency but also provides scientifically valuable insights for enhancing the efficiency of primary healthcare services in China and other developing nations.


Assuntos
Eficiência Organizacional , Atenção Primária à Saúde , China , Humanos , Análise Espacial , Gastos em Saúde/estatística & dados numéricos , Modelos Teóricos
6.
Mol Genet Metab Rep ; 40: 101102, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38911695

RESUMO

Background: The detailed clinical phenotype of patients carrying the α-galactosidase gene (GLA) c.548 G > A/p.Gly183Asp (p.G183D) variant in Fabry disease (FD) has not been thoroughly documented in the existing literature. Methods: This paper offers a meticulous overview of the clinical phenotype and relevant auxiliary examination results of nine confirmed FD patients with the p.G183D gene variant from two families. Pedigree analysis was conducted on two male patients with the gene variant, followed by biochemical and genetic screening of all high-risk relatives. Subsequently, evaluation of multiple organ systems and comprehensive instrument assessment were performed on heterozygotes of the p.G183D gene variant. Results: The study revealed that all patients exhibited varying degrees of cardiac involvement, with two demonstrating left ventricular wall thickness exceeding 15 mm on echocardiography, and the remaining six exceeding 11 mm. Impaired renal function was evident in all six patients with available blood test data, two of whom underwent kidney transplantation. Eight cases reported neuropathic pain, and five experienced varying degrees of stroke or transient ischemic attack (TIA). Conclusion: This study indicates that the GLA p.G183D gene variant can induce premature organ damage, particularly affecting the heart, kidneys, and nervous system.

7.
Sci Adv ; 10(26): eado6476, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924402

RESUMO

Mechanical computing encodes information in deformed states of mechanical systems, such as multistable structures. However, achieving stable mechanical memory in most multistable systems remains challenging and often limited to binary information. Here, we report leveraging coupling kinematic bifurcation in rigid cube-based mechanisms with elasticity to create transformable, multistable mechanical computing metastructures with stable, high-density mechanical memory. Simply stretching the planar metastructure forms a multistable corrugated platform. It allows for independent mechanical or magnetic actuation of individual bistable element, serving as pop-up voxels for display or binary units for various tasks such as information writing, erasing, reading, encryption, and mechanologic computing. Releasing the pre-stretched strain stabilizes the prescribed information, resistant to external mechanical or magnetic perturbations, whereas re-stretching enables editable mechanical memory, akin to selective zones or disk formatting for information erasure and rewriting. Moreover, the platform can be reprogrammed and transformed into a multilayer configuration to achieve high-density memory.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38856914

RESUMO

The role of amentoflavone on cartilage injury in knee osteoarthritis (KOA) rats and the underlying mechanism were explored. KOA rat and IL-1ß-stimulated chondrocyte models were constructed. MTT, colony formation, and ELISA were performed to determine the cytotoxicity, cell proliferation, and inflammatory factors. The role of PTGS2 in IL-1ß-stimulated chondrocytes was also confirmed through transfecting PTGS2 overexpression and silencing plasmids. Further, we analyzed how amentoflavone regulated PTGS2 to improve IL-1ß-stimulated chondrocytes in vitro. Additionally, we analyzed the expression of PTGS2 after amentoflavone treatment. In vivo, HE and Safranin-O staining were carried out, and the inflammatory response was detected by ELISA and HE staining. In addition, we also analyzed the regulatory effect of amentoflavone on PTGS2 and explored the mechanism effect of PTGS2 in vitro and in vivo. The results indicated that PTGS2 was the downstream molecule of amentoflavone, which was highly expressed in IL-1ß-stimulated chondrocytes and KOA rats, and amentoflavone decreased PTGS2 expression. We also confirmed the potential role of amentoflavone on KOA, which was also characterized by the repair of cartilage injury, reduction of inflammatory infiltration, and improvement of functional disability. Consistent with in vivo results, in vitro experiments gave the same conclusions. Amentoflavone reduced PTGS2 expression in IL-1ß-stimulated chondrocytes and inhibited inflammation of chondrocytes via PTGS2. Collectively, the results confirmed that this drug was the potential targeted drug for KOA, whose repair effect on cartilage injury was partly related to PTGS2.

9.
BMC Urol ; 24(1): 117, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851678

RESUMO

BACKGROUND: This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS: By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS: The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS: PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Dinoprostona , Receptores de Prostaglandina E Subtipo EP2 , Ureter , Cálculos Ureterais , Receptores de Prostaglandina E Subtipo EP2/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Ureter/metabolismo , Transdução de Sinais/fisiologia , Masculino , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia
10.
Nature ; 630(8016): 353-359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867127

RESUMO

Exoskeletons have enormous potential to improve human locomotive performance1-3. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals.


Assuntos
Simulação por Computador , Exoesqueleto Energizado , Quadril , Robótica , Humanos , Exoesqueleto Energizado/provisão & distribuição , Exoesqueleto Energizado/tendências , Aprendizagem , Robótica/instrumentação , Robótica/métodos , Corrida , Caminhada , Pessoas com Deficiência , Tecnologia Assistiva/provisão & distribuição , Tecnologia Assistiva/tendências
11.
J Mater Chem B ; 12(25): 6146-6154, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842181

RESUMO

Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.


Assuntos
Irinotecano , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Irinotecano/química , Irinotecano/farmacologia , Humanos , Animais , Camundongos , Isomerismo , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polietilenoglicóis/química , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/análogos & derivados , Camundongos Nus
12.
Hortic Res ; 11(5): uhae086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799127

RESUMO

Fruit ripening is manipulated by the plant phytohormone ethylene in climacteric fruits. While the transcription factors (TFs) involved in ethylene biosynthesis and fruit ripening have been extensively studied in tomato, their identification in pear remains limited. In this study, we identified and characterized a HOMEODOMAIN TF, PbHB.G7.2, through transcriptome analysis. PbHB.G7.2 could directly bind to the promoter of the ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid synthase (PbACS1b), thereby enhancing its activity and resulting in increased ethylene production during pear fruit ripening. Yeast-two-hybrid screening revealed that PbHB.G7.2 interacted with PbHB.G1 and PbHB.G2.1. Notably, these interactions disrupted the transcriptional activation of PbHB.G7.2. Interestingly, PbHB.G1 and PbHB.G2.1 also bind to the PbACS1b promoter, albeit different regions from those bound by PbHB.G7.2. Moreover, the regions of PbHB.G1 and PbHB.G2.1 involved in their interaction with PbHB.G7.2 differ from the regions responsible for binding to the PbACS1b promoter. Nonetheless, these interactions also disrupt the transcriptional activation of PbHB.G1 and PbHB.G2.1. These findings offer a new mechanism of ethylene biosynthesis during climacteric fruit ripening.

13.
J Am Chem Soc ; 146(23): 15843-15849, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815616

RESUMO

Heptazine derivatives have attracted significant interest due to their small S1-T1 gap, which contributes to their unique electronic and optical properties. However, the nature of the lowest excited state remains ambiguous. In the present study, we characterize the lowest optical transition of heptazine by its magnetic transition dipole moment. To measure the magnetic transition dipole moment, the flat heptazine must be chiroptically active, which is difficult to achieve for single heptazine molecules. Therefore, we used supramolecular polymerization as an approach to make homochiral stacks of heptazine derivatives. Upon formation of the supramolecular polymers, the preferred helical stacking of heptazine introduces circular polarization of absorption and fluorescence. The magnetic transition dipole moments for the S1 ← S0 and S1 → S0 are determined to be 0.35 and 0.36 Bohr magneton, respectively. These high values of magnetic transition dipole moments support the intramolecular charge transfer nature of the lowest excited state from nitrogen to carbon in heptazine and further confirm the degeneracy of S1 and T1.

14.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809594

RESUMO

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Assuntos
Oxigenases de Função Mista , Oxirredução , Estereoisomerismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Teoria Quântica , Sulfetos/química , Sulfetos/metabolismo , Indóis/química , Indóis/metabolismo , Modelos Químicos , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares
15.
Environ Toxicol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581187

RESUMO

INTRODUCTION: Bladder cancer (BLCA) is a prevalent and deadly form of urinary cancer, and there is a need for effective therapies, particularly for muscle-invasive bladder cancer (MIBC). Cell cycle inhibitors show promise in restoring control of the cell cycle in BLCA cells, but their clinical prognosis evaluation is limited. METHODS: Transcriptome and scRNA-seq data were collected from the Cancer Genome Atlas Program (TCGA)-BLCA and GSE190888 cohort, respectively. R software and the Seurat package were used for data analysis, including cell quality control, dimensionality reduction, and identification of differentially expressed genes. Genes related to the cell cycle were obtained from the genecards website, and a protein-protein interaction network analysis was performed using cytoscape software. Functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular docking were conducted using various tools and packages. BLCA cell lines were cultured and transfected for in vitro experimental assays, including RT-qPCR analysis, and CCK-8 cell viability assays. RESULTS: We identified 32 genes as independent risk or protective factors for BLCA prediction. Functional enrichment analysis revealed their involvement in cell cycle regulation, apoptosis, and various signaling pathways. Using these genes, we developed a nomogram for predicting BLCA survival, which displayed high prognosis stratification efficacy in BLCA patients. Four cell cycle associated key genes identified, including NCAM1, HBB, CKD6, and CTLA4. We also identified the main cell types in BLCA patients and investigated the functional differences between epithelial cells based on their expression levels of key genes. Furthermore, we observed a high positive correlative relationship between the infiltration of cancer-associated fibroblasts and the risk score value. Finally, we conducted in vitro experiments to demonstrate the suppressive role of NCAM1 in BLCA cell proliferation. CONCLUSION: These findings suggest that cell cycle associated genes could serve as potential biomarkers for predicting BLCA prognosis and may represent therapeutic targets for the development of more effective therapies. Hopefully, these findings provide valuable insights into the molecular mechanisms and potential therapeutic targets in BLCA from the perspective of cell cycle. Moreover, NCAM1 was a novel cell proliferation suppressor in the BLCA carcinogenesis.

16.
Nat Commun ; 15(1): 2831, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565562

RESUMO

The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.


Assuntos
Compostos Heterocíclicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Cisteína , Sistemas de Liberação de Medicamentos
18.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

19.
Int J Biol Macromol ; 268(Pt 2): 131895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677700

RESUMO

Diabetes-related skin ulcers are of significant clinical concern. Although conventional dressings have been developed, their outcomes have not been adequate, indicating the need to investigate functional dressings for the treatment of diabetic ulcers. Copper selenide nanoparticles (Cu2Se NPs) demonstrate outstanding photoresponsiveness, which is critical to the healing process. However, their limited solubility in water restricts their application. To synthesize the ODT-PMMA@Cu2Se NP-doped decellularized periosteum­sodium alginate functional dressing-ODT-PMMA@Cu2Se/ECM-S (OP@Cu2Se/ECM-S), Cu2Se NPs were modified by n-octadecanethiol (ODT) end-functionalized poly (methacrylic acid) (PMAA) ligands homogeneously dispersed in a decellularized periosteum/sodium alginate matrix. This process improved the water solubility and stability. Moreover, under near-infrared irradiation (NIR), ODT-PMMA@Cu2Se demonstrated robust photo-responsiveness along with photothermal and photodynamic effects, leading to rapid heating and stimulation of reactive oxygen species (ROS) generation. These two processes work in concert to exhibit excellent antibacterial ability; at 20 µg/mL concentration of Cu2Se NPs, the bacterial activities of S. aureus and E. coli were 5.40 % and 0.96 %, respectively. Without the NIR laser irradiation, OP@Cu2Se/ECM-S rapidly increased the vascular endothelial growth factor (VEGF) expression, triggered the phosphatidylinositide 3-kinases (PI3K) and protein kinase B (AKT) signaling pathway, affected the expression of bFGF and CD31, and promoted neovascularization, proliferation, and cell migration. In a diabetic mouse wound model, OP@Cu2Se/ECM-S exhibited good biocompatibility and promoted epidermal regeneration, collagen deposition, and neovascularization. In a mouse model of subcutaneous abscesses, OP@Cu2Se/ECM-S also showed excellent antibacterial activity, in vivo experiments confirmed a decrease in bacterial activity to 1.97 %. Thus, OP@Cu2Se/ECM-S is a potentially useful approach for healing diabetic wounds.


Assuntos
Alginatos , Bandagens , Cobre , Diabetes Mellitus Experimental , Periósteo , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Alginatos/química , Alginatos/farmacologia , Cobre/química , Cobre/farmacologia , Periósteo/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Masculino , Staphylococcus aureus/efeitos dos fármacos
20.
Nat Commun ; 15(1): 3505, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664383

RESUMO

The development of optoelectronics mimicking the functions of the biological nervous system is important to artificial intelligence. This work demonstrates an optoelectronic, artificial, afferent-nerve strategy based on memory-electroluminescence spikes, which can realize multiple action-potentials combination through a single optical channel. The memory-electroluminescence spikes have diverse morphologies due to their history-dependent characteristics and can be used to encode distributed sensor signals. As the key to successful functioning of the optoelectronic, artificial afferent nerve, a driving mode for light-emitting diodes, namely, the non-carrier injection mode, is proposed, allowing it to drive nanoscale light-emitting diodes to generate a memory-electroluminescence spikes that has multiple sub-peaks. Moreover, multiplexing of the spikes can be obtained by using optical signals with different wavelengths, allowing for a large signal bandwidth, and the multiple action-potentials transmission process in afferent nerves can be demonstrated. Finally, sensor-position recognition with the bio-inspired afferent nerve is developed and shown to have a high recognition accuracy of 98.88%. This work demonstrates a strategy for mimicking biological afferent nerves and offers insights into the construction of artificial perception systems.


Assuntos
Potenciais de Ação , Potenciais de Ação/fisiologia , Luminescência , Neurônios Aferentes/fisiologia , Inteligência Artificial , Humanos , Biomimética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA