Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Biol Reprod ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438135

RESUMO

Preimplantation embryos undergo a series of important biological events, including epigenetic reprogramming and lineage differentiation, and the key genes and specific mechanisms that regulate these events are critical to reproductive success. USP7 is a deubiquitinase involved in the regulation of a variety of cellular functions, yet its precise function and mechanism in preimplantation embryonic development remain unknown. Our results showed that RNAi-mediated silencing of USP7 in mouse embryos or treatment with P5091, a small molecule inhibitor of USP7, significantly reduced blastocyst rate and blastocyst quality, and decreased total and TE cell numbers per blastocyst, as well as destroying normal lineage differentiation. The results of single-cell RNA-seq, RT-qPCR, western blot, and immunofluorescence staining indicated that interference with USP7 caused failure of the morula-to-blastocyst transition and was accompanied by abnormal expression of key genes (Cdx2, Oct4, Nanog, Sox2) for lineage differentiation, decreased transcript levels, increased global DNA methylation, elevated repressive histone marks (H3K27me3), and decreased active histone marks (H3K4me3 and H3K27ac). Notably, USP7 may regulate the transition from the morula to blastocyst by stabilizing the target protein YAP through the ubiquitin-proteasome pathway. In conclusion, our results suggest that USP7 may play a crucial role in preimplantation embryonic development by regulating lineage differentiation and key epigenetic modifications.

2.
J Comp Neurol ; 532(3): e25606, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38544361

RESUMO

The mouse retina contains over 40 types of retinal ganglion cells (RGCs) that differ in morphology, function, or gene expression. RGCs also differ by whether their axons target the brain.s ipsilateral or contralateral hemisphere. Contralaterally projecting RGCs (contraRGCs) are widespread in mouse retina, whereas ipsilateral projecting RGCs (ipsiRGCs) are confined to the ventro-temporal (VT) crescent of retina. In this study, we employed the Sert-Cre transgenic line, which had been reported to selectively label ipsiRGCs, to study ipsiRGCs during development. Although the number of Cre-expressing ipsiRGCs did not significantly increase with postnatal age, the region of retina that they occupied did, and by adulthood represented ~30% of the retinal surface. Unexpectedly, genetic ablation of Sert-Cre cells failed to fully disrupt ipsilateral projecting retinal axons, suggesting that not all ipsiRGCs generated Cre in Sert-Cre mice. To test this hypothesis, we retrogradely labeled ipsiRGCs in Sert-Cre mice which revealed that not all ipsiRGCs are labeled in Sert-Cre mice and a small population of contraRGCs flanking the VT crescent generates Cre in this line. These results do not negate the usefulness of the Sert-Cre mouse but do raise important caveats to the interpretation of such studies.


Assuntos
Células Ganglionares da Retina , Colículos Superiores , Animais , Camundongos , Colículos Superiores/anatomia & histologia , Retina , Encéfalo , Animais Geneticamente Modificados , Vias Visuais/anatomia & histologia
3.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293194

RESUMO

Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.

4.
J Biol Chem ; 300(1): 105562, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097189

RESUMO

Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.


Assuntos
Blastocisto , Metilação de DNA , Embrião de Mamíferos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Análise da Expressão Gênica de Célula Única , Sulfitos , Animais , Bovinos , Feminino , Gravidez , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Epigênese Genética , Perfilação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Sulfitos/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia
5.
Theriogenology ; 206: 161-169, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210940

RESUMO

Zinc plays a crucial role in the growth and reproductive functions of animals. Despite the positive effects of zinc that have been reported in oocytes of cows, pigs, yaks, and other animals, the influence of zinc on sheep is little known. To investigate the effect of zinc on the in vitro maturation of sheep oocytes and subsequent parthenogenesis-activated embryonic development, we added different concentrations of zinc sulfate to the in vitro maturation (IVM) culture medium. The IVM culture medium with zinc improved the maturation of sheep oocytes and the subsequent blastocyst rate after parthenogenesis activation. Notably, it also enhanced the level of glutathione and mitochondrial activity while reducing levels of reactive oxygen species. Thus, zinc addition to the IVM medium improved the quality of oocytes with a positive effect on the subsequent development of oocytes and embryos.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Zinco , Gravidez , Feminino , Bovinos , Suínos , Animais , Ovinos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Zinco/farmacologia , Desenvolvimento Embrionário , Oócitos/fisiologia , Partenogênese , Suplementos Nutricionais , Espécies Reativas de Oxigênio/farmacologia , Blastocisto/fisiologia
6.
Front Cell Neurosci ; 17: 1157577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091919

RESUMO

In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.

7.
Environ Pollut ; 327: 121482, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967007

RESUMO

Microplastics (MPs) are an emerging pollutant that is becoming recognized as an increasingly serious environmental problem. The biological toxicity and resulting health risks of MPs have attracted much attention in the research community. While the effects of MPs on various mammalian organ systems have been described, their interactions with oocytes and the underlying mechanism of their activity within the reproductive system have remained ambiguous. Here, we discovered that oral administration of MPs to mice (40 mg/kg per day for 30 days) significantly reduced the oocyte maturation and fertilization rate, embryo development, and fertility. Ingestion of MPs significantly increased the ROS level in oocytes and embryos, leading to oxidative stress, mitochondrial dysfunction, and apoptosis. Moreover, mouse exposure to MPs caused DNA damage in oocytes, including spindle/chromosome morphology defects, and downregulation of actin and Juno expression in mouse oocytes. In addition, mice were also exposed to MPs (40 mg/kg per day) during gestation and lactation to determine trans-generational reproductive toxicity. The results showed that maternal exposure to MPs during pregnancy resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, MPs exposure of mothers markedly reduced oocyte maturation, fertilization rate, and embryonic development in their female offspring. This investigation provides new insights on the mechanism of MPs' reproductive toxicity and raises concerns for potential risks of MP pollution on the reproductive health of humans and animals.


Assuntos
Microplásticos , Plásticos , Gravidez , Humanos , Camundongos , Feminino , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Reprodução , Oócitos , Estresse Oxidativo , Mamíferos/metabolismo
8.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 19-33, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36738198

RESUMO

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) is widely used in the field of livestock breeding. However, its low efficiency, untargeted cutting and low safety have greatly hampered its use for introducing single base mutations in livestock breeding. Single base editing, as a new gene editing tool, can directly replace bases without introducing double strand breaks. Single base editing shows high efficiency and strong specificity, and provides a simpler and more effective method for precise gene modification in livestock breeding. This paper introduces the principle and development of single base editing technology and its application in livestock breeding.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Gado/genética , Mutação , Tecnologia
9.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 204-216, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36738211

RESUMO

In this study, a single base editing system was used to edit the FecB and GDF9 gene to achieve a targeted site mutation from A to G and from C to T in Ouler Tibetan sheep fibroblasts, and to test its editing efficiency. Firstly, we designed and synthesized sgRNA sequences targeting FecB and GDF9 genes of Ouler Tibetan sheep, followed by connection to epi-ABEmax and epi-BE4max plasmids to construct vectors and electrotransfer into Ouler Tibetan sheep fibroblasts. Finally, Sanger sequencing was performed to identify the target point mutation of FecB and GDF9 genes positive cells. T-A cloning was used to estimate the editing efficiency of the single base editing system. We obtained gRNA targeting FecB and GDF9 genes and constructed the vector aiming at mutating single base of FecB and GDF9 genes in Ouler Tibetan sheep. The editing efficiency for the target site of FecB gene was 39.13%, whereas the editing efficiency for the target sites (G260, G721 and G1184) of GDF9 gene were 10.52%, 26.67% and 8.00%, respectively. Achieving single base mutation in FecB and GDF9 genes may facilitate improving the reproduction traits of Ouler Tibetan sheep with multifetal lambs.


Assuntos
Edição de Genes , Animais , Ovinos/genética , Tibet , Mutação , Fenótipo , Mutagênese Sítio-Dirigida
10.
J Neurochem ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683435

RESUMO

The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.

11.
J Dairy Sci ; 106(1): 769-782, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400613

RESUMO

Aberrant epigenetic nuclear reprogramming, especially imprinting pattern disorders, is one of the major causes of failure of clone development from somatic cell nuclear transfer (SCNT). Previous studies showed that ZFP57 is a key protein required for imprint maintenance after fertilization. In this study, we found that imprinting control regions in several imprinted genes were significantly hypomethylated in cloned embryos compared with in vitro fertilization embryos, indicating a loss of imprinted gene methylation. The ZFP57 expression was capable of maintaining the correct degree of methylation at several imprinting control regions and correcting abnormal hypomethylation. Moreover, we successfully obtained bovine fetal fibroblasts overexpressing ZFP57, which were used as donors for SCNT. Our results demonstrated that overexpression of ZFP57 increased total and trophectoderm cell numbers and the ratio of inner cell mass to total cells, reduced the apoptosis rate and significantly enhanced the development of SCNT blastocysts in vitro, ultimately achieving a degree of methylation similar to that in in vitro fertilization embryos. We concluded that overexpression of ZFP57 in donor cells provided an effective method for enhancing nuclear reprogramming and developmental potential in SCNT embryos. The ZFP57 protein played a key role in maintaining the methylation of imprinted genes during early embryonic development, which may be effective for enhanced SCNT in cattle.


Assuntos
Metilação de DNA , Técnicas de Transferência Nuclear , Gravidez , Feminino , Bovinos , Animais , Técnicas de Transferência Nuclear/veterinária , Desenvolvimento Embrionário , Blastocisto/metabolismo , Fertilização in vitro/veterinária
12.
Curr Mol Pharmacol ; 15(1): 190-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33881976

RESUMO

BACKGROUND: High-quality of the oocyte is crucial for embryo development and the success of human-assisted reproduction. The postovulatory aged oocytes lose developmental competence with mitochondrial dysfunction and oxidative stress. Coenzyme Q10 (CoQ10) is widely distributed in the membranes of cells and has an important role in the mitochondrial respiration chain against oxidative stress and modulation of gene expression. OBJECTIVE: The objective of this study is to investigate the functions and mechanisms of CoQ10 on delaying postovulatory oocyte aging. METHODS: Quantitative real-time PCR and Immunofluorescence staining were used to determine the expression patterns of the biogenesis genes of CoQ10 in postovulatory aged oocytes compared with fresh oocytes. The mitochondrial function, apoptosis, reactive oxygen species (ROS) accumulation and spindle abnormalities were investigated after treatment with 10 µM CoQ10 in aged groups. SIRT4 siRNA or capped RNA was injected into oocytes to investigate the function of SIRT4 on postovulatory oocyte aging and the relationship between CoQ10 and SIRT4. RESULTS: Multiple CoQ10 biosynthesis enzymes are insufficient, and a supplement of CoQ10 can improve oocyte quality and elevate the development competency of postovulatory aged oocytes. CoQ10 can attenuate the aging-induced abnormalities, including mitochondrial dysfunction, ROS accumulation, spindle abnormalities, and apoptosis in postovulatory aged oocytes. Furthermore, SIRT4, which was first found to be up-regulated in postovulatory aged oocytes, decreased following CoQ10 treatment. Finally, knockdown of SIRT4 can rescue aging-induced dysfunction of mitochondria, and the efficiency of CoQ10 rescuing dysfunction of mitochondria can be weakened by SIRT4 overexpression. CONCLUSION: Supplement of CoQ10 protects oocytes from postovulatory aging by inhibiting SIRT4 increase.


Assuntos
Mitocôndrias , Oócitos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados
13.
Int J Biol Macromol ; 195: 547-557, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906611

RESUMO

Chromatin assembly factor-1, subunit b (CHAF1b), the p60 subunit of the chromatin-assembly factor-1 (CAF-1) complex, is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to CHAF1b, its function in preimplantation embryos remains obscure. In this study, we showed that CHAF1b knockdown did not affect the blastocyst rate, but resulted in a low blastocyst hatching rate, outgrowth failure in vitro, and embryonic lethality after implantation in vivo. Notably, CHAF1b depletion increased apoptosis and caused down-regulated expression of key regulators of cell fate specification, including Oct4, Cdx2, Sox2, and Nanog. Further analysis revealed that CHAF1b mediated the replacement of H3.3 with H3.1/3.2, which was associated with decreased repressive histone marks (H3K9me2/3 and H3K27me2/3) and increased active histone marks (H3K4me2/3). Moreover, RNA-sequencing analysis revealed that CHAF1b depletion resulted in the differential expression of 1508 genes, including epigenetic modifications genes, multiple lineage-specific genes, and several genes encoding apoptosis proteins. In addition, assay for transposase-accessible chromatin-sequencing analysis demonstrated that silencing CHAF1b altered the chromatin accessibility of lineage-specific genes and epigenetic modifications genes. Taken together, these data imply that CHAF1b plays significant roles in preimplantation embryos, probably by regulating epigenetic modifications and lineage specification.


Assuntos
Blastocisto/metabolismo , Fator 1 de Modelagem da Cromatina/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem da Célula/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Epigênese Genética , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Camundongos , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654745

RESUMO

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.


Assuntos
Encéfalo/fisiologia , Matriz Extracelular/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais , Animais , Axônios/fisiologia , Integrinas/metabolismo , Camundongos , Transdução de Sinais , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Colículos Superiores/fisiologia
15.
Theriogenology ; 166: 29-37, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677127

RESUMO

Small ubiquitin-like modifier 2 (SUMO2) is a small protein that modulates the stability and activity of other proteins. Although a variety of activities have been attributed to SUMO2, its function in preimplantation embryos is still obscure. We first explored the expression of SUMO2 protein in early embryos, and showed that compared with the 2-cell stage, the expression was increased at first, peaked at the 8-cell stage, and then dramatically decreased. To study the function of SUMO2, we used siRNA microinjection to knock down SUMO2.The silencing of SUMO2 significantly reduced the rate of in vitro blastocyst development from 75.56% to 40.60%. Notably, knockdown of SUMO2 (KD) altered the expression of CDX2, OCT4, and NANOG. The number of cells expressing CDX2 decreased, while OCT4 and NANOG were ectopically expressed in siSUMO2 embryos. The global H3K27me3 levels in SUMO2-KD embryos also were lower than in untreated embryos. Taken together, SUMO2 appears to play a significant role in mouse preimplantation embryos probably through key epigenetic modifications and regulation of pluripotency genes.


Assuntos
Fator 3 de Transcrição de Octâmero , Ubiquitina , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
16.
Toxicology ; 455: 152749, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771660

RESUMO

Isoniazid (INH), a synthetic first-line tuberculosis antibiotic, has been widely used in clinical treatment. It has been reported to cause toxic effects at multiple tissue sites and also increases the incidence of adverse pregnancy outcomes; but the mechanism of action of INH on the reproductive system of female mammals remains unclear. Here, we demonstrate that oral INH (40 mg/kg/day every other day for 28 days) severely affects oocyte maturation and fertilization, late blastocyst development and fertility. We found that INH could disrupt standard spindle assembly, chromosome arrangement, and actin filament dynamics, which compromised meiotic progression of mouse oocytes. INH treatment increased the level of reactive oxygen species (ROS) and activated the oxidative stress response pathway, Keap1-Nrf2. It also caused apoptosis of oocytes and mitochondrial dysfunction. Our findings demonstrate that oral INH reduces fertility and damages the mammalian reproductive system by altering cytoskeletal dynamics and Juno expression, inducing oxidative stress and apoptosis, and activating the Keap1-Nrf2 signaling pathway in mouse oocytes.


Assuntos
Antituberculosos/toxicidade , Isoniazida/toxicidade , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Antituberculosos/administração & dosagem , Apoptose/efeitos dos fármacos , Feminino , Isoniazida/administração & dosagem , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Oócitos/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Exp Cell Res ; 399(2): 112421, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412164

RESUMO

Postovulatory oocyte aging has a major influence on the development potential of embryos. Many antioxidants can delay oocyte aging by regulating the expression of SIRT1. However, there is a lack of knowledge on SIRT1 function in postovulatory oocyte aging. In vitro transcribed RNA of Sirt1 was injected into fresh oocytes to investigate the function of SIRT1 during postovulatory oocyte aging. In the present study, SIRT1 was found to be down-regulated in aged oocytes compared with fresh oocytes. Meanwhile the intensity of acetylation of H3K9 (H3K9ac) and H3K4 methylation increased in postovulatory aged oocytes. After the oocytes were injected with SIRT1 and aged for 12 h, the intensity of H3K9ac and H3K4 methylation markedly decreased compared with controls. Furthermore, SIRT1 overexpression also reduced the aging-induced oocyte morphological changes and reactive oxygen species accumulation, maintained the spindle normal morphology and attenuated the aging-associated abnormalities of mitochondrial function. The role of SIRT1 in protecting oocyte aging was diminished when oocytes with overexpressed SIRT1 were cultured with SIRT1 inhibitor EX-527. Briefly, these present results show that SIRT1 not only reduced the non-epigenetic changes such as abnormal oocyte morphology, ROS accumulation, spindle defects and mitochondrial dysfunctions but also regulated the epigenetic changes in order to maintain the quality of postovulatory aged oocytes.


Assuntos
Senescência Celular/genética , Epigênese Genética/genética , Oócitos/fisiologia , Sirtuína 1/fisiologia , Acetilação , Animais , Antioxidantes/metabolismo , Células Cultivadas , Metilação de DNA/genética , Feminino , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Oócitos/citologia , Ovulação/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
Biol Reprod ; 104(2): 325-335, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246328

RESUMO

Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4-a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Proliferação de Células/genética , Quebras de DNA , Proteínas de Ligação a DNA/genética , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Knockout , Mutação
19.
Ecotoxicol Environ Saf ; 207: 111231, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916527

RESUMO

Lead, a common metallic contaminant, is widespread in the living environment, and has deleterious effects on the reproductive systems of humans and animals. Although numerous toxic effects of lead have been reported, the effects and underlying mechanisms of the impacts of lead exposure on the female reproductive system, especially oocyte maturation and fertility, remain unknown. In this study, mice were treated by gavage for seven days to evaluate the reproductive damage and role of Nrf2-mediated defense responses during lead exposure. Lead exposure significantly reduced the maturation and fertilization of oocytes in vivo. Additionally, lead exposure triggered oxidative stress with a decreased glutathione level, increased amount of reactive oxygen species, and abnormal mitochondrial distribution. Moreover, lead exposure caused histopathological and ultrastructural changes in oocytes and ovaries, along with decreases in the activities of catalase, glutathione peroxidase, total superoxide dismutase, and glutathione-S transferase, and increases in the levels of malonaldehyde in mouse ovaries. Further experiments demonstrated that lead exposure activated the Nrf2 signaling pathway to protect oocytes against oxidative stress by enhancing the transcription levels of antioxidant enzymes. In conclusion, our study demonstrates that lead activates the Nrf2/Keap1 pathway and impairs oocyte maturation and fertilization by inducing oxidative stress, leading to a decrease in the fertility of female mice.


Assuntos
Substâncias Perigosas/toxicidade , Chumbo/toxicidade , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Chumbo/metabolismo , Malondialdeído/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
20.
J Neurosci ; 40(39): 7421-7435, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32847968

RESUMO

GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.


Assuntos
Interneurônios/metabolismo , Neurogênese , Comunicação Parácrina , Somatostatina/metabolismo , Sinapses/metabolismo , Animais , Matriz Extracelular/metabolismo , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Neocórtex/fisiologia , Somatostatina/genética , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...