Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 112: 104889, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915460

RESUMO

The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised a global catastrophe. To date, there is no specific antiviral drug available to combat this virus, except the vaccine. In this study, the main protease (Mpro) required for SARS-CoV-2 viral replication was expressed and purified. Thirty-six compounds were tested as inhibitors of SARS-CoV-2 Mpro by fluorescence resonance energy transfer (FRET) technique. The half-maximal inhibitory concentration (IC50) values of Ebselen and Ebsulfur analogs were obtained to be in the range of 0.074-0.91 µM. Notably, the molecules containing furane substituent displayed higher inhibition against Mpro, followed by Ebselen 1i (IC50 = 0.074 µM) and Ebsulfur 2k (IC50 = 0.11 µM). The action mechanism of 1i and 2k were characterized by enzyme kinetics, pre-incubation and jump dilution assays, as well as fluorescent labeling experiments, which suggested that both compounds covalently and irreversibly bind to Mpro, while molecular docking suggested that 2k formed an SS bond with the Cys145 at the enzymatic active site. This study provides two very potent scaffolds Ebsulfur and Ebselen for the development of covalent inhibitors of Mpro to combat COVID-19.


Assuntos
Antivirais/metabolismo , Azóis/metabolismo , Compostos Organosselênicos/metabolismo , SARS-CoV-2/metabolismo , Compostos de Enxofre/metabolismo , Proteínas da Matriz Viral/metabolismo , Antivirais/química , Antivirais/uso terapêutico , Azóis/química , Azóis/uso terapêutico , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Isoindóis , Cinética , Simulação de Acoplamento Molecular , Compostos Organosselênicos/química , Compostos Organosselênicos/uso terapêutico , SARS-CoV-2/isolamento & purificação , Relação Estrutura-Atividade , Compostos de Enxofre/química , Compostos de Enxofre/uso terapêutico , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Tratamento Farmacológico da COVID-19
2.
Eur J Pharm Sci ; 142: 105161, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751778

RESUMO

The bacteria, harboring metallo-ß-lactamases (MßLs), become resistant on most ß-lactam antibiotics, specifically New Delhi metallo-ß-lactamase-1 (NDM-1), which hydrolyzes almost all ß-lactam antibiotics leading to bacterial multiple-drug resistance. It is highly desirable to develop effective NDM-1 inhibitors in reviving the efficacy of existing antibiotics. Here, we report a potent covalently reversible scaffold, 3-Bromopyruvate (3BP) to target the NDM-1 in vitro and in vivo. Enzymatic kinetic studies revealed that 3BP is capable of inhibiting the B1 and B2 MßLs and exhibited the best inhibition on NDM-1 with an IC50 of 2.57 µM, also, it was found to be a dose- and time-dependent inhibitor. The study of inhibition mechanism suggested that 3BP reversibly inactivate NDM-1, and may form a dynamic reversible covalent bond with cysteine at active site of the enzyme. Besides, 3BP effectively restored the activity of five ß-lactam antibiotics on three clinical strains expressing NDM-1, resulting in 2-8-fold reduction in MIC. Moreover, the toxicity evaluation of 3BP against L929 mouse fibroblastic cells indicated that 3BP had low cytotoxicity, implying it may be used as lead molecule for future drug candidate.


Assuntos
Antibacterianos/farmacologia , Piruvatos/farmacologia , beta-Lactamases/metabolismo , Animais , Bactérias/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Cisteína/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fibroblastos/microbiologia , Cinética , Camundongos
3.
Bioorg Chem ; 84: 192-201, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502631

RESUMO

The superbug infection caused by New Delhi metallo-ß-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1a-b and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16-9 µM, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 µM. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 µg/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli EC08 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos de Enxofre/farmacologia , beta-Lactamases/metabolismo , Animais , Antibacterianos/síntese química , Antibacterianos/química , Azóis/síntese química , Azóis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/enzimologia , Fibroblastos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Estrutura Molecular , Relação Estrutura-Atividade , Compostos de Enxofre/síntese química , Compostos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...