Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(5): uhae077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779140

RESUMO

How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28395227

RESUMO

In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2+ and H2PO4- in DMSO/H2O (v/v=9:1, pH=7.2) buffer solution with high selectivity and sensitivity. When added Cu2+ ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, and Mg2+ ions. More interestingly, the Cu2+ ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2+ and T-Cu2+ to H2PO4- were evaluated to be 1.609×10-8M and 0.994×10-7M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2+ and H2PO4- test kits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...