Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(6): 3773-3780, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615779

RESUMO

Although many strategies have been used to help design effective near-infrared (NIR) luminescent materials, it is still a huge challenge to realize long-wavelength NIR luminescence of diimineplatinum(II) complexes in the solid state. Herein, we have successfully achieved long-wavelength NIR luminescence of a family of diimineplatinum(II) complexes based on a new strategy that combines a one-dimensional (1D) "Pt wire" structure with the electronic effect of the substituent. The structures of six solvated diimineplatinum(II) complexes based on 4,4-dichloro-2,2'-bipyridine or 4,4-dibromo-2,2'-bipyridine and 4-substituted phenylacetylene ligands have been determined, namely, 1·1/2toluene, 2·1/2THF, 3·1/8toluene, 4·1/2THF, 5·1/8CH2Cl2, and 6·1/4toluene. All of them crystallize in the monoclinic space group C2/c or C2/m and stack in the 1D "Pt wire" structure. In the solid state, six complexes exhibited unusual long-wavelength metal-metal-to-ligand charge-transfer luminescence that peaked at 984, 1044, 972, 990, 1022, and 935 nm, respectively. Interestingly, 2·1/2THF has the shortest Pt···Pt distance and the longest emission wavelength among the six complexes. As far as we know, the luminescence of 2·1/2THF at 1044 nm is the longest emission wavelength among known diimineplatinum(II) complexes. Systematic studies revealed that good molecular planarity, suitable substituent position, weak hydrogen-bond-forming ability of the substituents, appropriate molecular bending, and weakening of the interaction between solvated molecules and platinum molecules are conducive to the construction of a 1D "Pt wire" structure of the diimineplatinum(II) complex. Furthermore, the emission energy of the complex is mainly determined by the strength of the Pt-Pt interaction and electronic effect of the substituent.

2.
Onco Targets Ther ; 11: 2571-2579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780250

RESUMO

PURPOSE: Bulky non-small cell lung cancer (NSCLC) is difficult to achieve effective local control by conventionally fractionated radiotherapy (CRT). The present work aims to evaluate the safety and efficacy of partial stereotactic ablative boost radiotherapy (P-SABR) in bulky NSCLC. PATIENTS AND METHODS: From December 2012 through August 2017, 30 patients with bulky NSCLC treated with P-SABR technique were analyzed. The P-SABR plan consisted of one partial SABR plan (5-9 Gy/f, 3-6 fractions) to gross tumor boost (GTVb), followed by one CRT plan to the planning target volume (PTV). GTVb was the max volume receiving SABR to guarantee the dose of organs-at-risks (OARs) falloff to about 3 Gy/f. The total dose of PTV margin was planned to above 60 Gy. The simply CRT plans were created using the same planning parameters as the original plan, with the goal to achieve comparable OARs doses and PTV margin dose to the P-SABR plan. Dosimetric variables were acquired in both P-SABR and compared CRT plans. Toxicity, local control, and survival were also evaluated. RESULTS: Median follow-up in survivors was 10.3 months (range=2.3-39.4 months). Eleven patients (36.7%) had partial response (PR) and ten patients (33.3%) had stable disease (SD). Two-year overall survival was 55.6%. Two-year local control rate was 85.7%. No severe acute side effects >CTCAE Grade III were observed. Compared to the simply CRT plan, P-SABR plans achieved similar doses to the OARs and Dmin, but increased dose at the isocenter, Dmean, Dmax, and biological equivalent dose (BED) significantly (P<0.05). BED in the tumor center could reach 107.3 Gy (93.2-132 Gy). Patients with B90≥65% achieved a higher local control rate than those with B90<65% (P=0.010). CONCLUSION: This retrospective study suggests that P-SABR is feasible and well tolerated in bulky NSCLC. Local control rate is encouraging, especially for the B90≥65% group, which may due to the ability of P-SABR to optimize BED with equivalent toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...