Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368806

RESUMO

Understanding factors driving soil multifunctionality can help with terrestrial ecosystem restoration. Soil microbial diversity and network complexity are two important factors influencing ecosystem multifunctionality. However, their effects on soil multifunctionality are still unclear. Based on high-throughput sequencing, we analyzed soil microbial alpha diversity and network complexity and their relative impacts on soil multifunctionality during the aerial seeding restoration process from 1983 to 2017 in Mu Us sandy land, China, a region threatened by desertification. Our results showed soil bacterial and fungal alpha diversity and multifunctionality increased with aerial seeding restoration. We found the community composition of soil bacteria and fungi changed with restoration periods. The keystone species of the soil bacterial network changed during restoration, while those of the soil fungal network remained unchanged. Soil bacterial and fungal species mainly maintained positive associations throughout the restoration periods. Soil bacterial network complexity initially decreased before increasing with restoration, while soil fungal network complexity increased continuously. Soil multifunctionality was found to have significantly positive correlations with soil fungal network complexity and soil bacterial alpha diversity. Compared with soil fungal alpha diversity and soil microbial network complexity, soil bacterial alpha diversity significantly promoted soil multifunctionality. Our research highlights the critical impact that soil bacterial alpha diversity plays in soil multifunctionality in restored ecosystems threatened by desertification.


Assuntos
Ecossistema , Solo , Bactérias/genética , China , Microbiologia do Solo
2.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955371

RESUMO

Depression is a prevalent affective disorder and constitutes a leading cause of global disability. The limitations of current pharmacological interventions contribute to the substantial health burden attributed to this condition. There is a pressing need for a deeper understanding of the underlying mechanisms of depression, making pre-clinical models with translational potential highly valuable. Mongolian medicine, a subset of traditional medicine, posits that disease occurrence is closely tied to the equilibrium of wind, bile, and Phlegm. In this study, we introduce a protocol for the chronic unpredictable mild stress (CUMS) method in rats. Within this framework, rats are subjected to a series of fluctuating, mild stressors to induce a depression-like phenotype, mimicking the pathogenesis of human depression. Behavioral assays employed in this protocol include the sucrose preference test (SPT), indicative of anhedonia-a core symptom of depression; the open field test (OFT), which measures anxiety levels; and the Morris water maze test (MWM), which evaluates spatial memory and learning abilities. The CUMS method demonstrates the capability to induce anhedonia and to cause long-term behavioral deficits. Furthermore, this protocol is more aligned with Mongolian medical theory than other animal models designed to elicit depression-like behavior. The development of this animal model and subsequent research provide a robust foundation for future innovative studies in the realm of Mongolian medicine.


Assuntos
Medicina Tradicional da Mongólia , Estresse Psicológico , Animais , Ratos , Memória Espacial , Depressão , Ansiedade
3.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912533

RESUMO

Zadi-5 is a traditional Mongolian medicine that is widely used for the treatment of depression and symptoms of irritation. Although the therapeutic effects of Zadi-5 against depression have been indicated in previously reported clinical studies, the identity and impact of the active pharmaceutical compounds present in the drug have not been fully elucidated. This study used network pharmacology to predict the drug composition and identify the therapeutically active compounds in Zadi-5 pills. Here, we established a rat model of chronic unpredicted mild stress (CUMS) and conducted an open field test (OFT), Morris water maze (MWM) analysis, and sucrose consumption test (SCT) to investigate the potential therapeutic efficacy of Zadi-5 in depression. This study aimed to demonstrate Zadi-5's therapeutic effects for depression and predict the critical pathway of the action of Zadi-5 against the disorder. The vertical and horizontal scores (OFT), SCT, and zone crossing numbers of the fluoxetine (positive control) and Zadi-5 groups were significantly higher (P < 0.05) than those of the CUMS group rats without treatment. According to the results of network pharmacology analysis, the PI3K-AKT pathway was found to be essential for the antidepressant effect of Zadi-5.


Assuntos
Depressão , Fosfatidilinositol 3-Quinases , Ratos , Animais , Depressão/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Medicina Tradicional da Mongólia , Farmacologia em Rede , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estresse Psicológico/metabolismo , Hipocampo/metabolismo , Comportamento Animal , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA