Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(21): 15404-15413, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37853516

RESUMO

This density functional theory study explores the detailed mechanism of nickel-catalyzed hydroalkylation of the C═C bond of N-Cbz-protected enamines (Cbz = benzyloxycarbonyl) with alkyl iodides to give chiral α-alkyl amines. The active catalyst (biOx)NiH, a chiral bioxazoline (biOx)-chelated Ni(I) hydride, exhibits chemoselectivity that favors single electron transfer to the alkyl iodide over C═C hydrometalation with the enamine. This generates an alkyl radical and a Ni(II) intermediate, which takes up the enamine substrate CbzNHCH═CH2CH3 via a regio- and enantioselective C═C insertion into the NiII-H bond. The resulting Ni(II) alkyl complex combines with the alkyl radical, forming a Ni(III) intermediate, from which the alkyl-alkyl reductive elimination delivers the chiral amine product. The regioselectivity arises from a combination of orbital and noncovalent interactions, both of which are induced by the Cbz group. Thus, Cbz plays an additional role in controlling regioselectivity. The enantioselectivity stems from the differing distortion energies of CbzNHCH═CH2CH3. The reductive elimination is the rate-determining step (ΔG⧧ = 18.7 kcal/mol). In addition, the calculations show a noninnocent behavior of the biOx ligand induced by the insertion of CbzNHCH═CH2CH3 into the Ni-H bond of (biOx)NiH. These computationally gained insights can have implications for developing new Ni(I)-catalyzed reactions.

2.
Nucleic Acids Res ; 48(13): 7182-7196, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32510157

RESUMO

Hippo-YAP signaling pathway functions in early lineage differentiation of pluripotent stem cells, but the detailed mechanisms remain elusive. We found that knockout (KO) of Mst1 and Mst2, two key components of the Hippo signaling in mouse embryonic stem cells (ESCs), resulted in a disruption of differentiation into mesendoderm lineage. To further uncover the underlying regulatory mechanisms, we performed a series of ChIP-seq experiments with antibodies against YAP, ESC master transcription factors and some characterized histone modification markers as well as RNA-seq assays using wild type and Mst KO samples at ES and day 4 embryoid body stage respectively. We demonstrate that YAP is preferentially co-localized with super-enhancer (SE) markers such as Nanog, Sox2, Oct4 and H3K27ac in ESCs. The hyper-activation of nuclear YAP in Mst KO ESCs facilitates the binding of Nanog, Sox2 and Oct4 as well as H3K27ac modification at the loci where YAP binds. Moreover, Mst depletion results in novel SE formation and enhanced liquid-liquid phase-separated Med1 condensates on lineage associated genes, leading to the upregulation of these genes and the distortion of ESC differentiation. Our study reveals a novel mechanism on how Hippo-YAP signaling pathway dictates ESC lineage differentiation.


Assuntos
Diferenciação Celular , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Serina-Treonina Quinase 3 , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
3.
NPJ Genom Med ; 1: 16013, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29263813

RESUMO

Noninvasive prenatal testing using massively parallel sequencing of maternal plasma DNA has been rapidly adopted in clinical use worldwide. Fetal DNA fraction in a maternal plasma sample is an important parameter for accurate interpretations of these tests. However, there is a lack of methods involving low-sequencing depth and yet would allow a robust and accurate determination of fetal DNA fraction in maternal plasma for all pregnancies. In this study, we have developed a new method to accurately quantify the fetal DNA fraction by analysing the maternal genotypes and sequencing data of maternal plasma DNA. Fetal DNA fraction was calculated based on the proportion of non-maternal alleles at single-nucleotide polymorphisms where the mother is homozygous. This new approach achieves a median deviation of 0.6% between predicted fetal DNA fraction and the actual fetal DNA fraction using as low as 0.03-fold sequencing coverage of the human genome. We believe that this method will further enhance the clinical interpretations of noninvasive prenatal testing using genome-wide random sequencing.

4.
Database (Oxford) ; 2013: bat007, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23411719

RESUMO

Yin Yang 1 (YY1), a ubiquitously expressed transcription factor, plays a critical role in regulating cell development, differentiation, cellular proliferation and tumorigenesis. Previous studies identified many YY1-regulated target genes in both human and mouse. Emerging global mapping by Chromatin ImmnoPrecipitation (ChIP)-based high-throughput experiments indicate that YY1 binds to a vast number of loci genome-wide. However, the information is widely scattered in many disparate poorly cross-indexed literatures; a large portion was only published recently by the ENCODE consortium with limited annotation. A centralized database, which annotates and organizes YY1-binding loci and target motifs in a systematic way with easy access, will be valuable resources for the research community. We therefore implemented a web-based YY1 Target loci Database (YY1TargetDB). This database contains YY1-binding loci (binding peaks) from ChIP-seq and ChIP-on-chip experiments, computationally predicated YY1 and cofactor motifs within each locus. It also collects the experimentally verified YY1-binding motifs from individual researchers. The current version of YY1TargetDB contains 92 314 binding loci identified by ChIP-based experiments; 157 200 YY1-binding motifs in which 42 are experimentally verified and 157 158 are computationally predicted; and 130 759 binding motifs for 47 cofactors. Database URL: http://www.myogenesisdb.org/YY1TargetDB.


Assuntos
Bases de Dados Genéticas , Loci Gênicos/genética , Fator de Transcrição YY1/metabolismo , Animais , Imunoprecipitação da Cromatina , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Ligação Proteica/genética , Reprodutibilidade dos Testes , Interface Usuário-Computador
5.
PLoS One ; 7(10): e48319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118982

RESUMO

BACKGROUND: Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine. METHODOLOGY: We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine. PRINCIPAL FINDINGS: Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length. CONCLUSIONS: With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded.


Assuntos
DNA/química , DNA/urina , Feto/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA/genética , Feminino , Humanos , Leptina/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Gravidez
6.
PLoS One ; 7(2): e27596, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319554

RESUMO

microRNAs (miRNAs) are non-coding RNAs that regulate gene expression post-transcriptionally, and mounting evidence supports the prevalence and functional significance of their interplay with transcription factors (TFs). Here we describe the identification of a regulatory circuit between muscle miRNAs (miR-1, miR-133 and miR-206) and Yin Yang 1 (YY1), an epigenetic repressor of skeletal myogenesis in mouse. Genome-wide identification of potential down-stream targets of YY1 by combining computational prediction with expression profiling data reveals a large number of putative miRNA targets of YY1 during skeletal myoblasts differentiation into myotubes with muscle miRs ranking on top of the list. The subsequent experimental results demonstrate that YY1 indeed represses muscle miRs expression in myoblasts and the repression is mediated through multiple enhancers and recruitment of Polycomb complex to several YY1 binding sites. YY1 regulating miR-1 is functionally important for both C2C12 myogenic differentiation and injury-induced muscle regeneration. Furthermore, we demonstrate that miR-1 in turn targets YY1, thus forming a negative feedback loop. Together, these results identify a novel regulatory circuit required for skeletal myogenesis and reinforce the idea that regulatory circuitries involving miRNAs and TFs are prevalent mechanisms.


Assuntos
MicroRNAs/fisiologia , Desenvolvimento Muscular/genética , Mioblastos Esqueléticos/citologia , Fator de Transcrição YY1/genética , Animais , Diferenciação Celular , Retroalimentação Fisiológica , Redes Reguladoras de Genes , Genoma/genética , Camundongos
7.
Clin Chem ; 58(3): 549-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22052939

RESUMO

BACKGROUND: Plasma DNA is predominantly hematopoietic in origin. The size difference between maternal- and fetal-derived DNA in maternal plasma prompted us to investigate whether there was any discrepancy in molecular size between hematopoietically and nonhematopoietically derived DNA in plasma. METHODS: Plasma DNA samples from 6 hematopoietic stem cell transplant recipients and 1 liver transplant recipient were analyzed by massively parallel paired-end sequencing. The size of each fragment was deduced from the alignment positions of the paired reads. In sex-mismatched transplant recipients, the reads from chromosome Y were used as markers for the male donor/recipient. For other transplant recipients, the reads of the donor- and recipient-specific alleles were identified from the single-nucleotide polymorphism genotypes. RESULTS: In male patients receiving female hematopoietic stem cells, more chromosome Y-derived DNA molecules (nonhematopoietically derived) were ≤150 bp than the autosome-derived ones (mainly hematopoietically derived) (median difference, 9.9%). In other hematopoietic stem cell transplant recipients, more recipient-specific DNA molecules (nonhematopoietically derived) were ≤150 bp than the donor-specific ones (hematopoietically derived) (median difference, 14.8%). In the liver transplant recipient, more donor-derived DNA molecules (liver derived) were ≤150 bp than the recipient-derived ones (mainly hematopoietically derived) (difference, 13.4%). The nonhematopoietically derived DNA exhibited a reduction in a 166-bp peak compared with the hematopoietically derived DNA. A 10-bp periodicity in size distribution below approximately 143 bp was observed in both DNA populations. CONCLUSIONS: Massively parallel sequencing is a powerful tool for studying posttransplantation chimerism. Plasma DNA molecules exhibit a distinct fragmentation pattern, with the nonhematopoietically derived molecules being shorter than the hematopoietically derived ones.


Assuntos
DNA/sangue , Transplante de Células-Tronco Hematopoéticas , Transplante de Fígado , Adulto , Alelos , Quimera/sangue , Quimera/genética , Cromossomos Humanos Y/genética , DNA/genética , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA