Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636755

RESUMO

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Látex , Medicina Regenerativa , Borracha , Humanos , Materiais Biocompatíveis/química , Látex/química , Medicina Regenerativa/métodos , Borracha/química , Animais , Cicatrização/efeitos dos fármacos
2.
J Control Release ; 365: 744-758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072085

RESUMO

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Assuntos
Candidíase , Infecção dos Ferimentos , Humanos , Anfotericina B , Antifúngicos/química , Bandagens , Candida albicans , Candidíase/tratamento farmacológico , Látex , Testes de Sensibilidade Microbiana , Infecção dos Ferimentos/tratamento farmacológico
3.
Biomater Adv ; 157: 213739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154400

RESUMO

Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.


Assuntos
Hipersensibilidade ao Látex , Látex , Animais , Humanos , Alérgenos , Proteínas , Materiais Biocompatíveis
4.
Int J Biol Macromol ; 249: 126016, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516224

RESUMO

Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination. We developed three coatings containing equal amounts of glycerol and Sicilian lemon essential oil (LEO) nanoemulsion. We identified seventeen chemicals from LEO by GC-MS chromatogram, including d-limonene, α-Pinene, ß-Pinene, and γ-Terpinene. The pectin and chitosan coatings were further characterized using different physicochemical, mechanical, and biological methods. The films demonstrated satisfactory results in strength and elongation at the perforation as fruit packaging. In addition, the coatings did not influence the weight and firmness of the strawberry pulps. We observed that 100 % essential oil was released in 1440 min resulting from the erosion process. Also, the oil preserved the chemical stability of the films. Antioxidant activity (AA), measured by Electron Paramagnetic Resonance (EPR), showed that the coatings loaded with 2 % LEO nanoemulsion (PC + oil) showed that almost 50 % of AA from LEO nanoemulsion was preserved. The chitosan and the pectin-chitosan coatings (PC + oil) inhibited filamentous fungi and yeast contaminations in strawberries for at least 14 days, showing a relationship between the AA and antimicrobial results.


Assuntos
Quitosana , Fragaria , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Fragaria/microbiologia , Quitosana/química , Pectinas/farmacologia , Pectinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos
5.
Neurochem Res ; 48(9): 2895-2910, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217807

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the world, which seriously affects AD patients' life quality. Recently, long non-coding RNAs (lncRNAs) have been reported to play a key role in AD pathogenesis, however, the specific mechanism remains unclear. Herein, we aimed to investigate the role of lncRNA NKILA in AD. The learning and memory performance of rats from streptozotocin (STZ)-treated or other treated groups were tested by Morris water maze test. Relative levels of genes and proteins were measured using RT-qPCR and Western blotting. Mitochondrial membrane potential was tested by JC-1 staining. Levels of ROS, SOD, MDA, GSH-Px, and LDH were measured using corresponding commercial kits. Apoptosis was evaluated by TUNEL staining or Flow cytometry assay. RNA Immunoprecipitation (RIP), RNA pulldown, Chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays were utilized to test the interaction between indicated molecules. STZ treatment caused learning and memory impairment in rats and oxidative stress damage in SH-SY5Y cells. LncRNA NKILA was found to be elevated in the hippocampal tissues of rats and SH-SY5Y cells after STZ exposure. Knockdown of lncRNA NKILA alleviated STZ-induced neuronal damage. Furthermore, lncRNA NKILA could bind to ELAVL1, which regulate the stability of FOXA1 mRNA. Moreover, TNFAIP1 transcription process was controlled by FOXA1, which targeted the promoter of TNFAIP1. In vivo results demonstrated that lncRNA NKILA accelerated STZ-induced neuronal damage and oxidative stress by FOXA1/TNFAIP1 axis. Our findings indicated that knockdown of lncRNA NKILA inhibited the neuronal damage and oxidative stress induced by STZ through the FOXA1/TNFAIP1 axis, thereby alleviating the development of AD, revealing a promising therapeutic axis for AD treatment.


Assuntos
Doença de Alzheimer , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apoptose/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Heliyon ; 9(2): e13289, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873141

RESUMO

Background: China has become the country with the largest number of people with type 2 diabetes mellitus (T2DM), and Chinese medicine (CM) has unique advantages in preventing and treating T2DM, while accurate pattern differentiation is the guarantee for proper treatment. Objective: The establishment of the CM pattern differentiation model of T2DM is helpful to the pattern diagnosis of the disease. At present, there are few studies on dampness-heat pattern differentiation models of T2DM. Therefore, we establish a machine learning model, hoping to provide an efficient tool for the pattern diagnosis of CM for T2DM in the future. Methods: A total of 1021 effective samples of T2DM patients from ten CM hospitals or clinics were collected by a questionnaire including patients' demographic and dampness-heat-related symptoms and signs. All information and the diagnosis of the dampness-heat pattern of patients were completed by experienced CM physicians at each visit. We applied six machine learning algorithms (Artificial Neural Network [ANN], K-Nearest Neighbor [KNN], Naïve Bayes [NB], Support Vector Machine [SVM], Extreme Gradient Boosting [XGBoost] and Random Forest [RF]) and compared their performance. And then we also utilized Shapley additive explanation (SHAP) method to explain the best performance model. Results: The XGBoost model had the highest AUC (0.951, 95% CI 0.925-0.978) among the six models, with the best sensitivity, accuracy, F1 score, negative predictive value, and excellent specificity, precision, and positive predictive value. The SHAP method based on XGBoost showed that slimy yellow tongue fur was the most important sign in dampness-heat pattern diagnosis. The slippery pulse or rapid-slippery pulse, sticky stool with ungratifying defecation also performed an important role in this diagnostic model. Furthermore, the red tongue acted as an important tongue sign for the dampness-heat pattern. Conclusion: This study constructed a dampness-heat pattern differentiation model of T2DM based on machine learning. The XGBoost model is a tool with the potential to help CM practitioners make quick diagnosis decisions and contribute to the standardization and international application of CM patterns.

7.
Chem Pharm Bull (Tokyo) ; 71(2): 129-133, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464270

RESUMO

This work aims to investigate the effects and mechanism of emodin in treating diabetic gastroenteropathy and colonic dysmotility in STZ + HS/HF diet induced diabetic gastroenteropathy rats. Diabetic colonic dysmotility model was established by high-fat/high-glucose (HS/HF) feeding combined with streptozotocin (STZ). Emodin was divided into high, medium and low dose groups. After eight weeks of intervention, fasting blood glucose (FBG) and body weight were measured. Gastrointestinal transmission time was evaluated. Serum vasoactive intestinal peptide (VIP) and substance P (SP) were detected. Colonic protein expression of selective autophagy adaptor proteins p62 and beclin1 were detected by immunohistochemistry. Colonic protein expression of beclin1, autophagy related gene 5 (Atg5), C-kit and p62 were detected by Western blot. After treating with emodin, gastrointestinal transmission rate was improved. The expression of serum SP was increased and serum VIP was decreased. Colonic c-kit and p62 were up-regulated. The expressions of beclin1 and Atg5 were down-regulated. Emodin can improve colonic dysmotility and promote the recovery of colonic motility and intestinal defecation in diabetic rats. Its mechanism may involved with up-regulating the expression of C-kit and P62, down-regulating the expression of Beclin1 and Atg5 in colon, which are associated with colon over-autophagy of Cajal interstitial cell (ICC).


Assuntos
Diabetes Mellitus Experimental , Emodina , Células Intersticiais de Cajal , Ratos , Animais , Células Intersticiais de Cajal/metabolismo , Emodina/farmacologia , Emodina/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Proteína Beclina-1/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo
8.
Food Sci Nutr ; 9(1): 44-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33473269

RESUMO

With the increasing prevalence of diabetes in recent years, diabetic nephropathy (DN) has become a severe disease that greatly threatens human health. DN not only is a common complication of diabetes, but also takes an important place in kidney disease. To this end, the present study was designed to explore the effects of Forkhead box protein O1 (FoxO1) on reactive oxygen species (ROS) production in DN mice. DN mice were treated with recombinant protein of FoxO1. Afterward, inflammation ELISA kits were used to measure the levels of TNF-α, IL-1ß, IL-6, and IL-18. The levels of MDA, SOD, GSH, and GSH-PX were measured using kits according to the manufacturer's instructions. In addition, the production of ROS was assessed. Interestingly, the expression of FoxO1 was down-regulated in DN mice. The treatment of FoxO1 recombinant protein ameliorated MDA levels, increased the levels of SOD, GSH, and GSH-PX, and induced both mRNA and protein expression of hepatic serine protease inhibitor B1 (serpinB1) in ND mice. Similarly, FoxO1 reduced MDA levels and ROS production, increased the levels of SOD, GSH, and GSH-PXs, and induced the mRNA and protein expression of serpinB1 in in vitro model of DN. The inhibition of serpinB1 attenuated the effects of FoxO1 on ROS production-induced oxidative stress in in vitro model of DN. Overall, FoxO1/SERPINB1 ameliorated ROS production-induced oxidative stress in DN.

9.
Biochem Biophys Res Commun ; 520(2): 413-419, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607474

RESUMO

Peritoneal fibrosis (PF) caused by long-term peritoneal dialysis is closely associated with the epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs). Moreover, the anti-fibrotic role of Arctigenin (Arc) has been reported in several fibrosis disorders. Therefore, the preventive effect of Arc on transforming growth factor-ß1 (TGF-ß1)-induced EMT and the underlying mechanisms in HPMCs was investigated in this study. Firstly, the PD model was established by TGF-ß1 stimulation in cultured HPMCs in vitro, we found that TGF-ß1 significantly increased the EMT markers (α-SMA, vimentin, and fibronectin) and plasminogen activator inhibitor type 1 (PAI-1) expressions, but decreased epithelial marker (E-cadherin). Co-treatment with Arc (10, 20, 40 µM) ameliorated TGF-ß1-induced EMT in a dose-dependent manner, and the expression of PAI-1 was also inhibited by Arc, which was abrogated by restoration of PAI-1. Moreover, Arc enhanced the phosphorylated AMP-activated protein kinase (AMPK), but inhibited the phosphorylated IκBα level and nuclear translocation of nuclear factor κB (NF-κB) p65 in TGF-ß1-induced HPMCs. ChIP and Luciferase reporter assays verified that the increased binding capacity of NF-κB to the promoter of PAI-1 induced by TGF-ß1 was reversely attenuated by Arc in HPMCs. However, the effect of Arc on TGF-ß1-induced NF-κB activation, PAI-1 expression and EMT in HPMCs was attenuated by AMPK agonist Compound C. In conclusion, these data demonstrated that Arc suppressed TGF-ß1-induced EMT by activating the AMPK/NF-κB pathway to inhibit PAI-1 expression in HPMCs. Therefore, Arc might act as a potential therapeutic agent for PD treatment.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Furanos/farmacologia , Lignanas/farmacologia , Peritônio/citologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Diálise Peritoneal/efeitos adversos , Inibidor 1 de Ativador de Plasminogênio/genética , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...