Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801613

RESUMO

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
2.
Oncogene ; 38(23): 4496-4511, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742064

RESUMO

Sustained reliance on androgen receptor (AR) after failure of AR-targeting androgen deprivation therapy (ADT) prevents effective treatment of castration-recurrent (CR) prostate cancer (CaP). Interfering with the molecular machinery by which AR drives CaP progression may be an alternative therapeutic strategy but its feasibility remains to be tested. Here, we explore targeting the mechanism by which AR, via RhoA, conveys androgen-responsiveness to serum response factor (SRF), which controls aggressive CaP behavior and is maintained in CR-CaP. Following a siRNA screen and candidate gene approach, RNA-Seq studies confirmed that the RhoA effector Protein Kinase N1 (PKN1) transduces androgen-responsiveness to SRF. Androgen treatment induced SRF-PKN1 interaction, and PKN1 knockdown or overexpression severely impaired or stimulated, respectively, androgen regulation of SRF target genes. PKN1 overexpression occurred during clinical CR-CaP progression, and hastened CaP growth and shortened CR-CaP survival in orthotopic CaP xenografts. PKN1's effects on SRF relied on its kinase domain. The multikinase inhibitor lestaurtinib inhibited PKN1 action and preferentially affected androgen regulation of SRF over direct AR target genes. In a CR-CaP patient-derived xenograft, expression of SRF target genes was maintained while AR target gene expression declined and proliferative gene expression increased. PKN1 inhibition decreased viability of CaP cells before and after ADT. In patient-derived CaP explants, lestaurtinib increased AR target gene expression but did not significantly alter SRF target gene or proliferative gene expression. These results provide proof-of-principle for selective forms of ADT that preferentially target different fractions of AR's transcriptional output to inhibit CaP growth.


Assuntos
Androgênios/metabolismo , Neoplasias da Próstata/terapia , Proteína Quinase C/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Furanos , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias da Próstata/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
3.
Acta Biomater ; 50: 361-369, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069502

RESUMO

Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. STATEMENT OF SIGNIFICANCE: Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications.


Assuntos
Materiais Biocompatíveis/síntese química , Ácido Cítrico/química , Corantes Fluorescentes/síntese química , Polímeros/síntese química , Materiais Biocompatíveis/química , Ácidos Carboxílicos/química , Corantes Fluorescentes/química , Polímeros/química , Piridinas/química , Soroalbumina Bovina/química , Soluções , Espectrometria de Fluorescência , Tiazóis/síntese química , Tiazóis/química
4.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026115

RESUMO

Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell-mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer-specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP-PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti-BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP-PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP-PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell-cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The "self-powered" immune cell-mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Nanomedicina Teranóstica/métodos
5.
ACS Biomater Sci Eng ; 1(4): 201-217, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984572

RESUMO

Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based "live" targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems.

6.
Carbohydr Polym ; 92(2): 2245-51, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399284

RESUMO

In order to improve bioactivity of agarose, we modified agarose by carboxylation and grafting dopamine. Under alkaline condition, carboxylated agarose was prepared using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation system by oxidizing C(6) hydroxyl on D-galactose ring into carboxyl group, and the maximum value of the degree of carboxylation reached 30%. With the increase of the amount of oxidant, the molecular weight of the carboxylated agarose decreased to 4 kDa by gel permeation chromatography (GPC) measure. Carboxylated agarose reacted with dopamine through EDC condensation reaction to obtain agarose grafting dopamine (Ag-g-DA), and the grafting rate of dopamine was determined to be 9.3% by UV spectroscopy at 280 nm. The structures of these modified agaroses were determined by FT-IR and (13)C NMR. Both carboxylated agarose and Ag-g-DA showed no cytotoxicity and promoted cell-adhesiveness.


Assuntos
Ácidos Carboxílicos/química , Dopamina/química , Sefarose/química , Sefarose/farmacologia , Células 3T3 , Animais , Carbodi-Imidas/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/química , Dimetilaminas/química , Camundongos , Oxirredução , Sefarose/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...