Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250621

RESUMO

In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.


Assuntos
Colinérgicos , Drosophila , Animais
2.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955437

RESUMO

Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells' dendrites and axons, and that both activity in APL and APL's inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Animais
3.
Curr Biol ; 29(21): 3611-3621.e3, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630955

RESUMO

Slow-wave rhythms characteristic of deep sleep oscillate in the delta band (0.5-4 Hz) and can be found across various brain regions in vertebrates. Across phyla, however, an understanding of the mechanisms underlying oscillations and how these link to behavior remains limited. Here, we discover compound delta oscillations in the sleep-regulating R5 network of Drosophila. We find that the power of these slow-wave oscillations increases with sleep need and is subject to diurnal variation. Optical multi-unit voltage recordings reveal that single R5 neurons get synchronized by activating circadian input pathways. We show that this synchronization depends on NMDA receptor (NMDAR) coincidence detector function, and that an interplay of cholinergic and glutamatergic inputs regulates oscillatory frequency. Genetically targeting the coincidence detector function of NMDARs in R5, and thus the uncovered mechanism underlying synchronization, abolished network-specific compound slow-wave oscillations. It also disrupted sleep and facilitated light-induced wakening, establishing a role for slow-wave oscillations in regulating sleep and sensory gating. We therefore propose that the synchronization-based increase in oscillatory power likely represents an evolutionarily conserved, potentially "optimal," strategy for constructing sleep-regulating sensory gates.


Assuntos
Drosophila melanogaster/fisiologia , Rede Nervosa/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...