Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39203954

RESUMO

Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses.

2.
Sci Rep ; 12(1): 13926, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977997

RESUMO

Nanoparticles (NPs) show promising applications in biomedicine, catalysis, and energy harvesting. This applicability relies on controlling the material's features at the nanometer scale. Surfactants, a unique class of surface-active molecules, have a remarkable ability to tune NPs activity; provide specific functions, avoid their aggregation, and create stable colloidal solutions. Surfactants also control nanoparticles' nucleation and growth processes by modifying nuclei solubility and surface energy. While nucleation seems independent from the surfactant, NP's growth depends on it. NP`s size is influenced by the type of functional group (C, O, S or N), length of its C chain and NP to surfactant ratio. In this paper, gold nanoparticles (Au NPs) are taken as model systems to study how nucleation and growth processes are affected by the choice of surfactants by Dissipative Particle Dynamics (DPD) simulations. DPD has been mainly used for studying biochemical structures, like lipid bilayer models. However, the study of solid NPs, and their conjugates, needs the introduction of a new metallic component. To represent the collective phenomena of these large systems, their degrees of freedom are reduced by Coarse-Grained (CG) models. DPD behaved as a powerful tool for studying complex systems and shedding some light on some experimental observations, otherwise difficult to explain.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Surfactantes Pulmonares , Ouro/química , Bicamadas Lipídicas , Nanopartículas Metálicas/química , Nanopartículas/química , Tensoativos/química
3.
Nano Today ; 362021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34394703

RESUMO

HIV represents a persistent infection which negatively alters the immune system. New tools to reinvigorate different immune cell populations to impact HIV are needed. Herein, a novel nanotool for the specific enhancement of the natural killer (NK) immune response towards HIV-infected T-cells has been developed. Bispecific Au nanoparticles (BiAb-AuNPs), dually conjugated with IgG anti-HIVgp120 and IgG anti-human CD16 antibodies, were generated by a new controlled, linker-free and cooperative conjugation method promoting the ordered distribution and segregation of antibodies in domains. The cooperatively-adsorbed antibodies fully retained the capabilities to recognize their cognate antigen and were able to significantly enhance cell-to-cell contact between HIV-expressing cells and NK cells. As a consequence, the BiAb-AuNPs triggered a potent cytotoxic response against HIV-infected cells in blood and human tonsil explants. Remarkably, the BiAb-AuNPs were able to significantly reduce latent HIV infection after viral reactivation in a primary cell model of HIV latency. This novel molecularly-targeted strategy using a bispecific nanotool to enhance the immune system represents a new approximation with potential applications beyond HIV.

4.
J Org Chem ; 85(11): 7247-7257, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401518

RESUMO

Herein, we perform for the first time a preliminary NMR and computational study of the spiroglycol structure. Spiroglycol is a highly symmetrical molecule, but it should be chiral due to the presence of a chiral axis. The presence of two enantiomers was demonstrated performing NMR enantiodifferentiation experiments using α,α'-bis(trifluoromethyl)-9,10-anthracenedimethanol (ABTE) as a chiral solvating agent (CSA). The addition of 0.6 equiv of ABTE allows the differentiation of several spiroglycol proton signals. The lack of resolution observed in the proton spectrum can be tackled through the corresponding 13C NMR spectrum where a significant enantiodifferentiation at the spirocarbon atom was observed. In order to physically separate both enantiomers, a SPG derivatization with camphorsulfonic acid and Mosher's acid was performed affording the corresponding diastereoisomeric ester mixtures. Computations performed with the Gaussian16 package showed that the enantiodifferentiation is mainly due to the different compound thermodynamics stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA