Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(8): 2486-2494, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164504

RESUMO

Although worm-like micelles were invented 35 years ago, its formation pathway remains unclear. Inspired by the fact that a single molecular level experiment could provide meaningful and additional information, especially in a heterogeneous subpopulation, herein, we present a single molecular level study on the formation of wormlike micelles by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) in water. Our results indicated a coexistence of normal spherical micelles along with a big wormlike micelle in its formation path. More interestingly, we have two unique insights into the formation mechanism, which are inaccessible in ensemble averaged experiments: (i) at extremely low concentrations of the surfactant, [CTAB]/[NaSal] ∼ 0.06, the wormlike micelle attains the highest size; and (ii) the relative concentration of wormlike micelles is highest when [CTAB]/[NaSal] ∼ 2.


Assuntos
Compostos de Cetrimônio , Micelas , Cetrimônio , Compostos de Cetrimônio/química , Espectrometria de Fluorescência , Tensoativos/química
2.
Phys Chem Chem Phys ; 23(15): 9337-9346, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885064

RESUMO

Deep eutectic solvents (DESs) are emerging as new media of choice for biocatalysis due to their environmentally friendly nature, fine-tunability, and potential biocompatibility. This work deciphers the behaviour of bromelain in a ternary DES composed of acetamide, urea, and sorbitol at mole fractions of 0.5, 0.3, and 0.2, respectively (0.5Ac/0.3Ur/0.2Sor), with various degrees of hydration. Bromelain is an essential industrial proteolytic enzyme, and the chosen DES is non-ionic and liquid at room temperature. This provides us with a unique opportunity to contemplate protein behaviour in a non-ionic DES for the very first time. Our results infer that at a low DES concentration (up to 30% V/V DES), bromelain adopts a more compact structural conformation, whereas at higher DES concentrations, it becomes somewhat elongated. The microsecond conformational fluctuation time around the active site of bromelain gradually increases with increasing DES concentration, especially beyond 30% V/V. Interestingly, bromelain retains most of its enzymatic activity in the DES, and at some concentrations, the activity is even higher compared with its native state. Furthermore, we correlate the activity of bromelain with its structure, its active-site dynamics, and the physical properties of the medium. Our results demonstrate that the compact structural conformation and flexibility of the active site of bromelain favour its proteolytic activity. Similarly, a medium with increased polarity and decreased viscosity is favourable for its activity. The presented physical insights into how enzymatic activity depends on the protein structure and dynamics and the physical properties of the medium might provide useful guidelines for the rational design of DESs as biocatalytic media.

3.
J Phys Chem B ; 124(31): 6875-6884, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32686413

RESUMO

Deep eutectic solvents (DESs) are new-generation media that can be fine-tuned to have desired properties circumventing economic and environmental issues. Typically, these are ionic, and only recently, nonionic DESs, having interesting properties, are being explored. In this report, we examined the structure and dynamics of a nonionic lauric acid/menthol (LA/Men) DES through steady-state emission, solvation dynamics, time-resolved fluorescence anisotropy, and translational diffusion dynamics. The zero shift in the emission spectra of coumarin 153 (a solvatochromic dye) as a function of the excitation wavelength suggests that LA/Men DES is spatially homogenous. Decoupling (p = 0.63) of the average solvation time, ⟨τs⟩, from medium viscosity suggests the presence of mild dynamic heterogeneity in the system. Rotational time, ⟨τr⟩, which reflects the nature of the first solvation shell, shows little decoupling (p = 0.81), suggesting it to be fairly dynamically homogeneous at a shorter length scale. An Arrhenius-type analysis also proves that rotation is mainly controlled by medium viscosity. Translational diffusion time, ⟨τD⟩, which provides information at a larger length scale, is strongly decoupled from medium viscosity (p = 0.29). This indicates that at a larger length scale, the DES is quite dynamically heterogeneous. The slow component of solvation time, which is believed to originate at a larger length scale, correlates well with the translational diffusion timescale having similar activation energies. This suggests that their origin is same. Expectedly, for the long component of solvation time, the decoupling is quite strong (p = 0.30). Overall, our result demonstrates the structure and dynamics of the nonionic LA/Men DES, and the existence of length scale-dependent heterogeneity has been proposed.

4.
J Phys Chem B ; 124(10): 1995-2005, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32065849

RESUMO

Fluorescence up-conversion (∼250 fs instrumental response) coupled with time correlated single photon counting measurements was performed to explore the complete Stokes shift dynamics of a dipolar solute probe, coumarin 153 (C153), in several ionic acetamide deep eutectic solvents (DESs) that contained lithium nitrate/bromide/perchlorate as electrolyte. Combined measurements near room temperature reflected a total dynamic Stokes shift of approximately 800-1100 cm-1 and triexponential solvation response functions. Interestingly, the average rate of solvation became faster upon successive replacement of bromide by nitrate in these deep eutectics, and a subpicosecond time scale emerged in the measured solvation response when bromide was fully replaced by nitrate. Temperature dependent solute diffusion in these deep eutectics at the single molecule level, monitored by tracking the translational motion of rhodamine 6G (R6G) via fluorescence correlation spectroscopic (FCS) technique, revealed pronounced fractional viscosity dependence of the solute's translational motion. Subsequently, this partial decoupling of solute translation was attributed to the microheterogeneous nature of these ionic DESs after examining the diffusion-viscosity relationship via the FCS measurements of R6G in several normal solvents at room temperature and in a liquid amide solvent at different temperatures.

5.
J Phys Chem B ; 123(43): 9212-9221, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31589048

RESUMO

In the present paper, we have studied the temperature dependence of translational diffusion and solvation dynamics of a dissolved dipolar dye in the nonionic acetamide-urea deep eutectic solvent (DES), to characterize the viscosity coupling of the measured relaxation times and verify the dynamical heterogeneity aspect of this medium. Three different time-resolved experimental techniques have been employed for this purpose: fluorescence correlation spectroscopy, transient absorption (TA) spectroscopy, and optical Kerr effect (OKE) spectroscopy. The first method provides the proof that the translational diffusion time of a solute in acetamide-urea DES [fCH3CONH2 + (1 - f)CO(NH2)2, f = 0.6] exhibits a fractional viscosity dependence, with exponent 0.758, which, when compared with the viscosity-diffusion relationship for the same solute in common molecular solvents, suggests moderate deviation from the Stokes-Einstein relation. Stokes shift dynamics of a solvatochromic dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran in this DES, followed via femtosecond TA measurements, have been found to be triexponential in nature and dominated by a ∼100 fs component. The other two components, which contribute to a total dynamic Stokes shift magnitude of ∼2500 cm-1, are characterized by time constants in the ∼5 and ∼50 ps regimes. Subsequent comparison with the femtosecond OKE measurements suggests that the relatively slower picosecond solvation components originate from the rapid reorientation of the solvent molecules, while the subpicosecond solvation response arises from the participation of the collective low-frequency solvent modes (such as intermolecular vibrations and librations). We find that the rotational diffusion lifetimes also exhibit fractional power dependence on medium viscosity and thus deviate from the Stokes-Einstein-Debye pprediction. All of these results therefore suggest that the nonionic acetamide-urea DES is a moderately heterogeneous medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA