Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839950

RESUMO

Paliperidone was approved by the US FDA in 2006 as an extended-release (ER) tablet (Invega®) for the once-daily treatment of schizophrenia. This osmotic-controlled release oral delivery system (OROS) offers advantages, such as the prevention of plasma concentration fluctuation and reduced dosing frequency. The administration of the ER after a high-fat/high-calorie meal leads to increased maximum plasma concentration and area under the curve values by 60% and 54%, respectively. Food has various effects on gastrointestinal (GI) physiology, including changed transit times, changed volumes, altered pH in different GI compartments, secretion of bile salts, and increased hepatic blood flow. This may affect solubility, the dissolution rate, absorption, and the pharmacokinetics. The aim of this study was to apply physiologically based absorption modeling (PBAM) to provide insights on paliperidone ER absorption under fed and fasting conditions. The PBAM adequately predicted absorption from the OROS formulation under both conditions. Absorption primarily occurs in the ascending colon and caecum. After a high-fat/high-calorie meal, absorption is increased through the jejunum, ileum, and colon due to either increased solubilization or the better efficiency of the OROS technology. PBAM-guided approaches can improve the understanding of branded drugs and thereby aid in guiding the development of generic formulations or formulation alternatives.

2.
Eur J Pharm Biopharm ; 176: 87-94, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598768

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling for biopharmaceutics applications holds great promise as modelling and simulation tool in the field of modern oral modified release (MR) products. Understanding of gastro-intestinal absorption related processes is crucial to ensure the successful development of complex oral drug generic products. In the recent years, PBPK approach has been gradually influencing decision making ability of pharmaceutical industry as well as regulatory agencies. However, there is a gap in understanding its contribution in the field of oral modified release products. In this review, we have collected different recent research articles illustrating the significant contribution of PBPK to the research and development process of oral MR products, with special emphasis on generic drug products. Concretely, literature examples on the utility of PBPK formulation development, for in vitro- in vivo correlations (IVIVC) and prediction of oral bioavailability, and for in-silico food effect predictions were included in the review.


Assuntos
Biofarmácia , Modelos Biológicos , Administração Oral , Simulação por Computador , Absorção Intestinal/fisiologia , Solubilidade
3.
Angiogenesis ; 19(3): 257-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27146677

RESUMO

Aberrant activation of the hypoxia inducible factor (HIF) pathway causing overexpression of angiogenic genes, like vascular endothelial growth factor (VEGF), is one of the underlying causes of ocular neovascularization (NV) and metastatic cancer. Consistently, along with surgical interventions, a number of anti-VEGF agents have been approved by FDA for the treatment of ocular neovascular diseases. These anti-VEGF agents, like ranibizumab/lucentis, have revolutionized the treatment in the past decade. However, substantial vision improvement is observed only in a subset of age-related macular degeneration patients receiving ranibizumab. Further, all current therapies are associated with limitations and side effects. For example, surgeries cause tissue destruction and inflammation while anti-VEGF therapies are expensive, require repeated administration, and offer temporary relief from vascular leakage. These factors impose significant cost and treatment burdens to both the patient and society. With an aging population in most western countries with a continually increasing number of patients on lifelong treatment for these retinal diseases, the focus of ocular drug development for neovascular diseases will be to improve efficacy while reducing treatment costs. Blocking the HIF pathway, a major regulator of ocular NV and cancer, offers an appealing therapeutic strategy. Therefore, this review summarizes HIF inhibitors that have been recently evaluated for the treatment of different cancers and ischemic retinopathies.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Indutores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Animais , Antraciclinas/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Glicosídeos Cardíacos/uso terapêutico , Humanos , Indazóis/uso terapêutico , Lignanas/uso terapêutico , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...