Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
2.
Prev Vet Med ; 212: 105852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689897

RESUMO

Neomycin is a first-choice antibiotic for treatment of porcine enteritis caused by enterotoxigenic Escherichia coli (ETEC), but little is known about factors influencing resistance to this drug. The aims of this study were to assess antimicrobial resistance and virulence in 325 E. coli isolates obtained in 2020 from various infections in pigs, and to identify factors associated with neomycin resistance development. Susceptibility to 16 antimicrobial agents was determined by broth microdilution, and occurrence of ETEC-associated virulence factors was screened by PCR and hemolysis on blood agar. Univariate and multivariate logistic regression analyses were performed to determine if age group, virulence factors, or antibiotic use (neomycin and other antibiotics) were associated with neomycin resistance. STa, STb, LT, F4, and F18 were detected in 14%, 37%, 26%, 21% and 23% of the isolates, respectively. Resistance was low for antimicrobials of high public health importance (1.5% for cefotaxime, 1% for colistin and no fluoroquinolone resistance) but high for drugs used for treatment of ETEC enteritis (e.g. 20% for neomycin). Isolates with the ETEC pathotype were significantly associated with the weaner age group and intestinal/fecal origin. Multivariate analysis showed that recent neomycin use and presence of F4 or F18 were significantly associated with neomycin resistance amongst isolates from weaners. These results prove an association between neomycin resistance and use at the farm level. Further research is warranted to determine why neomycin resistance was associated with F4 and F18, and whether neomycin use may co-select for virulent strains.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Neomicina/farmacologia , Neomicina/uso terapêutico , Diarreia/veterinária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Virulência/uso terapêutico , Dinamarca , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia
3.
mSphere ; 7(5): e0040222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154672

RESUMO

Escherichia coli is intrinsically resistant to macrolides due to outer membrane impermeability, but may also acquire macrolide resistance genes by horizontal transfer. We evaluated the prevalence and types of acquired macrolide resistance determinants in pig clinical E. coli, and we assessed the ability of peptidomimetics to potentiate different macrolide subclasses against strains resistant to neomycin, a first-line antibiotic in the treatment of pig-enteric infections. The erythromycin MIC distribution was determined in 324 pig clinical E. coli isolates, and 62 neomycin-resistant isolates were further characterized by genome sequencing and MIC testing of azithromycin, spiramycin, tilmicosin, and tylosin. The impact on potency achieved by combining these macrolides with three selected peptidomimetic compounds was determined by checkerboard assays in six strains representing different genetic lineages and macrolide resistance gene profiles. Erythromycin MICs ranged from 16 to >1,024 µg/mL. Azithromycin showed the highest potency in wild-type strains (1 to 8 µg/mL), followed by erythromycin (16 to 128 µg/mL), tilmicosin (32 to 256 µg/mL), and spiramycin (128 to 256 µg/mL). Isolates with elevated MIC mainly carried erm(B), either alone or in combination with other acquired macrolide resistance genes, including erm(42), mef(C), mph(A), mph(B), and mph(G). All peptidomimetic-macrolide combinations exhibited synergy (fractional inhibitory concentration index [FICI] < 0.5) with a 4- to 32-fold decrease in the MICs of macrolides. Interestingly, the MICs of tilmicosin in wild-type strains were reduced to concentrations (4 to 16 µg/mL) that can be achieved in the pig intestinal tract after oral administration, indicating that peptidomimetics can potentially be employed for repurposing tilmicosin in the management of E. coli enteritis in pigs. IMPORTANCE Acquired macrolide resistance is poorly studied in Escherichia coli because of intrinsic resistance and limited antimicrobial activity in Gram-negative bacteria. This study reveals new information on the prevalence and distribution of macrolide resistance determinants in a comprehensive collection of porcine clinical E. coli from Denmark. Our results contribute to understanding the correlation between genotypic and phenotypic macrolide resistance in E. coli. From a clinical standpoint, our study provides an initial proof of concept that peptidomimetics can resensitize E. coli to macrolide concentrations that may be achieved in the pig intestinal tract after oral administration. The latter result has implications for animal health and potential applications in veterinary antimicrobial drug development in view of the high rates of antimicrobial-resistant E. coli isolated from enteric infections in pigs and the lack of viable alternatives for treating these infections.


Assuntos
Infecções por Escherichia coli , Peptidomiméticos , Espiramicina , Suínos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , Peptidomiméticos/farmacologia , Macrolídeos/farmacologia , Tilosina/farmacologia , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Infecções por Escherichia coli/veterinária , Neomicina
4.
Pathog Dis ; 77(1)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30801640

RESUMO

Quorum sensing (QS) plays an important role during the aetiology of urinary tract infection (UTI), as several virulence factors are under the regulation of QS. Pseudomonas aeruginosa and Serratia marcescens, the primary causative agents of UTI, employ acyl homoserine lactone (AHL) as signal molecules to coordinate various virulence factors. In this present study, chitosan extracted from the marine crab Portunus sanguinolentus was screened for its ability to inhibit the QS-signaling molecules of P. aeruginosa (PA01) and few clinical isolates of P. aeruginosa and S. marcescens. The extracted chitosan on comparison with a commercial chitosan showed significant inhibition of several QS-dependent virulence factors in P. aeruginosa and S. marscenes. Furthermore, qPCR analysis was carried out to confirm the down-regulation of fimA, fimC and flhD genes involved in adhesion and pathogenesis of S. marcescens and lasI and rhlI genes that governs the P. aeruginosa quorum sensing system. Moreover, the chitosan when coated on a catheter was also able to disrupt the mature biofilms which was revealed by scanning electron microscopy. Collectively, the present study showcases the QS inhibitory property of extracted chitosan from crab shells which is being discarded as a recalcitrant biowaste.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Urinárias/microbiologia , Fatores de Virulência , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Quitosana/química , Imunofluorescência , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções Urinárias/tratamento farmacológico , Fatores de Virulência/genética
5.
Microb Pathog ; 122: 162-173, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29920307

RESUMO

In the current study we have evaluated the antibiofilm and antivirulent properties of unexplored essential oils (EOs) obtained from Pogostemon heyneanus and Cinnamomum tamala against Methicillin Resistant Staphylococcus aureus (MRSA) strains. The EOs from both the aromatic plants was screened for their ability to prevent biofilm formation and to disrupt preformed biofilms. The efficacy of both the EOs to disrupt the preformed biofilms of various MRSA strains was determined by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM).The EOs were further able to reduce the Extracellular polymeric substance (EPS) and slime synthesis the two factors of the biofilm assemblage. The EOs was also found to be effective in reducing virulence factors like staphyloxanthin and hemolysin. In silico docking studies were performed for the major components of essential oils and dehydroxysqualene synthase of MRSA which is responsible for the synthesis of staphyloxanthin. The results suggest that (E)-nerolidol showed better binding affinity towards the enzyme. Other compounds have similar binding strengths with the enzyme. Furthermore, the synergistic effect EOs along with the commercially available DNaseI and Marine Bacterial DNase (MBD) showed that the synergistic effect had enhanced biofilm disruption ability. The results show that EOs from P. heyneanus and C. tamala has potential antivirulent and biofilm inhibitory properties against clinical and drug resistant S. aureus strains. The present study highlights the importance of bioprospecting plant based natural products as an alternative for antibiotics owing to the emergence of multi-drug resistant strains.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cinnamomum/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Pogostemon/química , Antibacterianos/isolamento & purificação , Biopolímeros/metabolismo , Proteínas Hemolisinas/biossíntese , Staphylococcus aureus Resistente à Meticilina/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Óleos Voláteis/isolamento & purificação , Virulência/efeitos dos fármacos , Fatores de Virulência/biossíntese , Xantofilas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...