Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 308(7): C539-47, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25588876

RESUMO

Mutations in the TMPRSS6 gene are associated with severe iron-refractory iron deficiency anemia resulting from an overexpression of hepcidin, the key regulator of iron homeostasis. The matriptase (MT)-2 protein (encoded by the TMPRSS6 gene) regulates hepcidin expression by cleaving hemojuvelin [HJV/hemochromatosis type 2 (HFE2)], a bone morphogenetic protein (BMP) coreceptor in the hepcidin regulatory pathway. We investigated the functional consequences of five clinically associated TMPRSS6 variants and the role of MT-2 protein domains by generating epitope-tagged mutant and domain-swapped MT-2-MT-1 (encoded by the ST14 gene) chimeric constructs and expressing them in HepG2/C3A cells. We developed a novel cell culture immunofluorescence assay to assess the effect of MT-2 on cell surface HJV expression levels, compatible with HJV cleavage. The TMPRSS6 variants Y141C, I212T, G442R, and C510S were retained intracellularly and were unable to inhibit BMP6 induction of hepcidin. The R271Q variant, although it has been associated with iron-refractory iron deficiency anemia, appears to remain functional. Analysis of the chimeric constructs showed that replacement of sperm protein, enterokinase, and agrin (SEA), low-density-lipoprotein receptor class A (LDLRA), and protease (PROT) domains from MT-2 with those from MT-1 resulted in limited cell surface localization, while the complement C1r/C1s, Uegf, Bmp1 (CUB) domain chimera retained localization at the cell surface. The SEA domain chimera was able to reduce cell surface HJV expression, while the CUB, LDLRA, and PROT domain chimeras were not. These studies suggest that the SEA and LDLRA domains of MT-2 are important for trafficking to the cell surface and that the CUB, LDLRA, and PROT domains are required for cleavage of HJV.


Assuntos
Anemia Ferropriva/enzimologia , Anemia Ferropriva/genética , Proteínas de Membrana/genética , Mutação/genética , Serina Endopeptidases/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteína da Hemocromatose , Células Hep G2 , Humanos , Proteínas de Membrana/fisiologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Serina Endopeptidases/fisiologia , Método Simples-Cego
2.
Cell ; 153(3): 601-13, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622244

RESUMO

Liver fibrosis is a reversible wound-healing response involving TGFß1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFß1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develop hepatic fibrosis. Mechanistically, we show that TGFß1 signaling causes a redistribution of genome-wide VDR-binding sites (VDR cistrome) in HSCs and facilitates VDR binding at SMAD3 profibrotic target genes via TGFß1-dependent chromatin remodeling. In the presence of VDR ligands, VDR binding to the coregulated genes reduces SMAD3 occupancy at these sites, inhibiting fibrosis. These results reveal an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis and define a role for VDR as an endocrine checkpoint to modulate the wound-healing response in liver. Furthermore, the findings suggest VDR ligands as a potential therapy for liver fibrosis.


Assuntos
Redes Reguladoras de Genes , Fígado/metabolismo , Fígado/patologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Animais , Calcitriol/análogos & derivados , Fibrose/prevenção & controle , Estudo de Associação Genômica Ampla , Células Estreladas do Fígado , Fígado/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Calcitriol/agonistas , Proteína Smad3/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo
3.
Cancer Prev Res (Phila) ; 5(4): 553-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22406377

RESUMO

AMP-activated protein kinase (AMPK) regulates lipid, cholesterol, and glucose metabolism in specialized metabolic tissues, such as muscle, liver, and adipose tissue. Agents that activate AMPK, such as metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), have beneficial effects on liver glucose and lipid metabolism. In addition, AMPK activation in proliferating hepatic stellate cells (HSC) induces growth arrest and inhibits hepatic fibrosis. As metformin and AICAR act in different ways to achieve their effects, our aim was to examine the effects of AMPK activation in quiescent HSCs with these two agents on HSC function. We found that phospho-AMPK levels were markedly upregulated by both AICAR and metformin in quiescent HSCs. However, although AICAR treatment induced cell death, cells treated with metformin did not differ from untreated controls. AICAR-mediated HSC cell death was paralleled by loss of expression of the TGF-ß decoy receptor Bambi, whereas metformin increased Bambi expression. Transfection of siRNA-Bambi into HSCs also induced cell death, mimicking the effects of AICAR, whereas overexpression of Bambi partially rescued AICAR-treated cells. As Bambi has previously been shown to promote cell survival through Wnt/ß-catenin signaling, a reporter incorporating binding sites for a downstream target of this pathway was transfected into HSCs and was induced. We conclude that although AICAR and metformin both activate AMPK in quiescent HSCs, AICAR rapidly induced cell death, whereas metformin-treated cells remained viable. The finding that metformin increases Bambi expression and activates Wnt/ß-catenin signaling provides a possible mechanistic explanation for this observation. These results suggest that AICAR and metformin may confer disease-specific therapeutic benefits.


Assuntos
Células Estreladas do Fígado/metabolismo , Hipoglicemiantes/farmacologia , Proteínas de Membrana/biossíntese , Metformina/farmacologia , Proteínas Wnt/biossíntese , beta Catenina/biossíntese , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Apoptose , Humanos , Inflamação , Lipopolissacarídeos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/metabolismo , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 315(4): 1070-6, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14985122

RESUMO

Ski-interacting protein (SKIP), a vitamin D receptor (VDR) coactivator, also functions as a repressor in Notch signalling in association with the corepressor SMRT. Here we show that SKIP bifunctionally modulates (activates or represses) Retinoid-X receptor (RXR)- and VDR-dependent gene transcription in a cell line-specific manner, with activation in CV-1 and repression in P19 cells. The coactivator function of SKIP in these cells appeared to correlate with the relative level and ratio of expression of N-CoR and p300, with greater SKIP activation in higher p300-expressing and lower N-CoR-expressing cell-lines. C-terminal deletion of SKIP (delta334-536 aa) was associated with strong activation in both CV-1 and P19 cells. The corepressors N-CoR and SMRT and the coregulator p300 interacted with SKIP through the same N-terminal region (1-200 aa). Overall these results suggest that transcriptional action of SKIP may depend on distinct functional domains and cell line-specific interactions with both corepressors and coactivators.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Expressão Gênica , Histona Acetiltransferases , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Correpressor 2 de Receptor Nuclear , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Receptores X de Retinoides , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Fatores de Transcrição de p300-CBP
5.
J Biol Chem ; 278(38): 36603-10, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12857748

RESUMO

The novel transcription factor hMusTRD1alpha1 (human muscle TFII-I repeat domain-containing protein 1alpha1; previously named MusTRD1; O'Mahoney, J. V., Guven, K. L., Lin, J., Joya, J. E., Robinson, C. S., Wade, R. P., and Hardeman, E. C. (1998) Mol. Cell. Biol. 18, 6641-6652) was identified in a yeast one-hybrid screen as a protein that binds within an upstream enhancer-containing region of the skeletal muscle-specific gene, TNNI1 (human troponin I slow; hTnIslow). It has been proposed that hMusTRD1alpha1 may play an important role in fiber-specific muscle gene expression by virtue of its ability to bind to an Inr-like element (nucleotides -977 to -960) within the hTnIslow upstream enhancer-containing region that is necessary for slow fiber-specific expression. In this study we demonstrate that both MEF2C, a known regulator of slow fiber-specific genes, and hMusTRD1alpha1 regulate hTnIslow through the Inr-like element. Co-transfection assays in C2C12 cells and Cos-7 cells demonstrate that hMusTRD1alpha1 represses hTnIslow transcription and prevents MEF2C-mediated activation of hTnIslow transcription. Gel shift analysis shows that hMusTRD1alpha1 can abrogate MEF2C binding to its cognate site in the hTnIslow enhancer. Glutathione S-transferase pull-down assays demonstrate that hMusTRD1alpha1 can interact with both MEF2C and the nuclear receptor co-repressor. The data support the role of hMusTRD1alpha1 as a repressor of slow fiber-specific transcription through mechanisms involving direct interactions with MEF2C and the nuclear receptor co-repressor.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares , Proteínas Nucleares , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transativadores , Fatores de Transcrição/metabolismo , Troponina I/química , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Núcleo Celular/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Fatores de Transcrição MEF2 , Camundongos , Modelos Biológicos , Modelos Genéticos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
6.
Biochem J ; 374(Pt 2): 359-67, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12780350

RESUMO

A human MusTRD (muscle TFII-I repeat domain (RD)-containing protein) isoform was originally identified in a yeast one-hybrid screen as a protein that binds the slow fibre-specific enhancer of the muscle gene troponin I slow [O'Mahoney, Guven, Lin, Joya, Robinson, Wade and Hardeman (1998) Mol. Cell. Biol. 18, 6641-6652]. MusTRD shares homology with the general transcription factor TFII-I by the presence of diagnostic I-RDs [Roy (2001) Gene 274, 1-13]. The human gene encoding MusTRD, GTF2IRD1 ( WBSCR11 / GTF3 ), was subsequently located on chromosome 7q11.23, a region deleted in the neurodegenerative disease, Williams-Beuren Syndrome [Osborne, Campbell, Daradich, Scherer, Tsui, Franke, Peoples, Francke, Voit, Kramer et al. (1999) Genomics 57, 279-284; Franke, Peoples and Francke (1999) Cytogenet. Cell. Genet. 86, 296-304; Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. The haploinsufficiency of MusTRD has been implicated in the myopathic aspect of this disease, which manifests itself in symptoms such as lowered resistance to fatigue, kyphoscoliosis, an abnormal gait and joint contractures [Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. Here, we report the identification of 11 isoforms of MusTRD in mouse skeletal muscles. These isoforms were isolated from a mouse skeletal muscle cDNA library and reverse transcription-PCR on RNA from various adult and embryonic muscles. The variability in these isoforms arises from alternative splicing of a combination of four cassettes and two mutually exclusive exons, all in the 3' region of the primary transcript of Gtf2ird1, the homologous mouse gene. The expression of some of these isoforms is differentially regulated spatially, suggesting individual regulation of the expression of these isoforms. Co-transfection studies in C2C12 muscle cell cultures reveal that isoforms differentially regulate muscle fibre-type-specific promoters. This indicates that the presence of different domains of MusTRD influences the activity exerted by this molecule on multiple promoters active in skeletal muscle.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Fibras Musculares de Contração Lenta/fisiologia , Proteínas Musculares/genética , Proteínas Nucleares , Regiões Promotoras Genéticas , Transativadores , Fatores de Transcrição/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
7.
Biochem J ; 370(Pt 3): 1087-95, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12487626

RESUMO

Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glucocorticoides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Genes Reporter , Antagonistas de Hormônios/metabolismo , Camundongos , Mifepristona/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica , Elementos de Resposta/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...