Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Protein J ; 34(1): 73-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25586080

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) a cytosolic enzyme of higher plants is also found in bacteria and cyanobacteria. Genetic and biochemical investigations have indicated that there are several isoforms of PEPC belonging to C3; C3/C4 and C4 groups but, the evolution of PEPC in cyanobacteria is not yet understood. The present study opens up an opportunity to understand the isoforms and functions of PEPC in cyanobacteria. The variations observed in PEPC among lower and higher orders of cyanobacteria, suggests convergent evolution of PEPC. There is a specific PEPC phosphorylation residue 'serine' at the N-terminus and PEPC determinant residue 'serine' at the C-terminal that facilitates high affinity for substrate binding. These residues were unique to higher orders of cyanobacteria, but, not in lower orders and other prokaryotes. The different PEPC forms of cyanobacteria were investigated for their kinetic properties with phosphoenolpyruvate as the substrate and the findings corroborated well with the in silico findings. In vitro enzymatic study of cyanobacteria belonging to three different orders demonstrated the role of aspartate as an allosteric effector, which inhibited PEPC by interacting with the highly conserved residues in the active site. The differences in mode of inhibition among the different order, thus, give a fair picture about the cyanobacterial PEPCs. The higher orders appear to possess the sequence coordinates and functionally conserved residues similar to isoforms of C4 type higher plants, whereas isoforms of PEPC of the lower orders did not resemble either that of C3 or C4 plants.


Assuntos
Anabaena variabilis , Proteínas de Bactérias , Fosfoenolpiruvato Carboxiquinase (ATP) , Prochlorococcus , Anabaena variabilis/enzimologia , Anabaena variabilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cinética , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Prochlorococcus/enzimologia , Prochlorococcus/genética
3.
Saudi Pharm J ; 23(4): 421-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27134545

RESUMO

Aim is to assess the anti-biofilm property of tenorite nanoparticles and to study their suitability as a possible coating material for medical implants. Tenorite (CuO) nanoparticles were synthesized by the optimized thermal decomposition method and characterized using TEM, XRD, FTIR and UV-Vis analysis. Their influence on biofilm formation of microbes was studied by growing multi drug resistant bacterial strains in the presence or absence of these nanoparticles at various concentrations. The cytotoxicity of nanoparticles on mammalian cells was studied at the corresponding concentrations. The nanoparticles were found to be uniformly dispersed, spherical shaped and <50 nm in size. They showed various degrees of anti-biofilm property against clinically isolated, biofilm forming multi drug resistant microorganisms such as Staphylococcus aureus, Pseudomonas fluorescens, Burkholderia mallei, Klebsiella pneumoniae, and Escherichia coli. Furthermore, Hep-2 cells showed excellent viability at tenorite nanoparticles concentration toxic to microbial growth. These results indicate that tenorite nanoparticles may be ideal candidates for being utilized as coating on medical implants in general and dental implants in particular.

4.
Bioresour Technol ; 102(14): 7218-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571528

RESUMO

Ten different strains of marine cyanobacteria were tested for their ability to decolourise and degrade a recalcitrant diazo dye, C.I. Acid Black 1. Of them, Oscillatoria curvicepsBDU92191 was able to grow up to a tested concentration of 500 mG L(-1). The organism degraded 84% of the dye at 100 mG L(-1) in 8 days in a medium free of combined nitrogen. The dye degrading ability is attributed to the activities of the enzymes: laccase, polyphenol oxidase and azoreductase. The absence of the doublet amine peak in addition to the overall reduction of absorption in the IR spectra confirmed the mineralisation of the tested azo dye. The nitrogen assimilating enzyme studies along with nitrogenase assay strongly suggested the ability of the non-heterocystous, filamentous marine cyanobacterium, O. curvicepsBDU92191 to use C.I. Acid Black 1 as a nitrogen source in an oligotrophic environment.


Assuntos
Corantes/metabolismo , Nitrogênio/farmacologia , Oscillatoria/efeitos dos fármacos , Oscillatoria/metabolismo , Negro de Amido , Biodegradação Ambiental/efeitos dos fármacos , Catecol Oxidase/metabolismo , Eletroforese em Gel de Ágar , Lacase/metabolismo , Nitrogênio/metabolismo , Oscillatoria/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Saline Syst ; 6: 6, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20525290

RESUMO

BACKGROUND: Cyanobacteria are recognized as the primordial organisms to grace the earth with molecular oxygen ~3.5 billion years ago as a result of their oxygenic photosynthesis. This laid a selection pressure for the evolution of antioxidative defense mechanisms to alleviate the toxic effect of active oxygen species (AOS) in cyanobacteria. Superoxide dismutases (SODs) are metalloenzymes that are the first arsenal in defense mechanism against oxidative stress followed by an array of antioxidative system. Unlike other living organisms, cyanobacteria possess multiple isoforms of SOD. Hence, an attempt was made to demonstrate the oxidative stress tolerance ability of marine cyanobacterium, Leptolyngbya valderiana BDU 20041 and to PCR amplify and sequence the SOD gene, the central enzyme for alleviating stress. RESULT: L. valderiana BDU 20041, a filamentous, non-heterocystous marine cyanobacterium showed tolerance to the tested dye (C.I. Acid Black 1) which is evident by increased in biomass (i.e.) chlorophyll a. The other noticeable change was the total ROS production by culture dosed with dye compared to the control cultures. This prolonged incubation showed sustenance, implying that cyanobacteria maintain their antioxidant levels. The third significant feature was a two-fold increase in SOD activity of dye treated L. valderiana BDU20041 suggesting the role of SOD in alleviating oxidative stress via Asada-Halliwell pathway. Hence, the organism was PCR amplified for SOD gene resulting in an amplicon of 550 bp. The sequence analysis illustrated the presence of first three residues involved in motif; active site residues at H4, 58 and D141 along with highly conserved Mn specific residues. The isolated gene shared 63.8% homology with MnSOD of bacteria confirmed it as Mn isoform. This is the hitherto report on SOD gene from marine cyanobacterium, L. valderiana BDU20041 of Indian subcontinent. CONCLUSION: Generation of Reactive Oxygen Species (ROS) coupled with induction of SOD by marine cyanobacterium, L. valderiana BDU20041 was responsible for alleviating stress caused by an azo dye, C. I. Acid Black 1. The partial SOD gene has been sequenced and based on the active site, motif and metal specific residues; it has been identified as Mn metalloform.

6.
Bioresour Technol ; 101(9): 3076-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20061142

RESUMO

Removal of combined nitrogen and addition of Poly R-478 to the growth medium enhanced oxidative stress, and altered the activities of ligninolytic enzymes of Oscillatoria willei BDU 130511. The activities of ligninolytic and antioxidative enzymes (LiP-like, LAC, PPO, SOD, POD, CAT, and APX) were increased upon nitrogen limitation and dye supplementation. The metabolic enzymes tested (GR, GPX, EST, and MDH) showed differential expressions under varied growth conditions. Up on nitrogen limitation, O. willei BDU 130511 showed enhanced ligninolytic activity as shown by alpha-keto-gamma-methylthiolbutyric acid (KTBA) oxidation and increased H(2)O(2) production. The organism decolourized 52% of Poly R-478 due to partial degradation and adsorption of dye particles from dye-added medium after 7 days of growth. This manuscript discusses the responses of ligninolytic and antioxidative enzymes of O. willei BDU 130511 during Poly R-478 decolourization/degradation, and the organism's potential in bioremediation.


Assuntos
Antraquinonas/isolamento & purificação , Antioxidantes/metabolismo , Lignina/metabolismo , Oscillatoria/enzimologia , Polímeros/isolamento & purificação , Água do Mar/microbiologia , Biodegradação Ambiental , Cor , Etilenos/biossíntese , Isoenzimas/metabolismo , Modelos Biológicos , Oscillatoria/crescimento & desenvolvimento , Oscillatoria/metabolismo , Estresse Oxidativo , Espectrofotometria
7.
BMC Genomics ; 8: 435, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18042279

RESUMO

BACKGROUND: Superoxide dismutases (SOD) are ubiquitous metalloenzymes that catalyze the disproportion of superoxide to peroxide and molecular oxygen through alternate oxidation and reduction of their metal ions. In general, SODs are classified into four forms by their catalytic metals namely; FeSOD, MnSOD, Cu/ZnSOD and NiSOD. In addition, a cambialistic form that uses Fe/Mn in its active site also exists. Cyanobacteria, the oxygen evolving photosynthetic prokaryotes, produce reactive oxygen species that can damage cellular components leading to cell death. Thus, the co-evolution of an antioxidant system was necessary for the survival of photosynthetic organisms with SOD as the initial enzyme evolved to alleviate the toxic effect. Cyanobacteria represent the first oxygenic photoautotrophs and their SOD sequences available in the databases lack clear annotation. Hence, the present study focuses on structure and sequence pattern of subsets of cyanobacterial superoxide dismutases. RESULT: The sequence conservation and structural analysis of Fe (Thermosynechococcus elongatus BP1) and MnSOD (Anabaena sp. PCC7120) reveal the sharing of N and C terminal domains. At the C terminal domain, the metal binding motif in cyanoprokaryotes is DVWEHAYY while it is D-X-[WF]-E-H-[STA]-[FY]-[FY] in other pro- and eukaryotes. The cyanobacterial FeSOD differs from MnSOD at least in three ways viz. (i) FeSOD has a metal specific signature F184X3A188Q189.......T280......F/Y303 while, in Mn it is R184X3G188G189......G280......W303, (ii) aspartate ligand forms a hydrogen bond from the active site with the outer sphere residue of W243 in Fe where as it is Q262 in MnSOD; and (iii) two unique lysine residues at positions 201 and 255 with a photosynthetic role, found only in FeSOD. Further, most of the cyanobacterial Mn metalloforms have a specific transmembrane hydrophobic pocket that distinguishes FeSOD from Mn isoform. Cyanobacterial Cu/ZnSOD has a copper domain and two different signatures G-F-H-[ILV]-H-x-[NGT]-[GPDA]-[SQK]-C and G-[GA]-G-G-[AEG]-R-[FIL]-[AG]-C-G, while Ni isoform has an nickel containing SOD domain containing a Ni-hook HCDGPCVYDPA. CONCLUSION: The present analysis unravels the ambiguity among cyanobacterial SOD isoforms. NiSOD is the only SOD found in lower forms; whereas, Fe and Mn occupy the higher orders of cyanobacteria. In conclusion, cyanobacteria harbor either Ni alone or a combination of Fe and Ni or Fe and Mn as their catalytic active metal while Cu/Zn is rare.


Assuntos
Cianobactérias/enzimologia , Superóxido Dismutase/química , Superóxido Dismutase/classificação , Sequência de Aminoácidos , Anabaena/enzimologia , Sítios de Ligação , Sequência Conservada , Ligação de Hidrogênio , Ferro/química , Ferro/metabolismo , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Níquel/química , Níquel/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
FEMS Microbiol Ecol ; 45(3): 263-72, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719595

RESUMO

Exclusion of combined nitrogen (NaNO3) from the growth medium caused certain changes in metabolic processes leading to cessation in growth of the non-heterocystous, non nitrogen-fixing marine cyanobacterium Oscillatoria willei BDU 130511. But antioxidative enzymes, namely superoxide dismutase and peroxidase, helped the organism to survive the nitrogen stress. Prominent effects observed during nitrogen starvation/limitation were: (i) reduction of major and accessory photosynthetic pigments, (ii) impairment of photosynthesis due to loss of one major Rubisco isoenzyme, (iii) reduced synthesis of lipids and fatty acids, (iv) modifications of protein synthesis leading to the repression of three polypeptides and synthesis of two new polypeptides, (v) enhanced glutamine synthetase and reduced nitrate reductase activities, (vi) enhanced production of hydrogen peroxide and (vii) induced appearance of four new peroxidase isoenzymes. The observed metabolic changes were reversible, and the arrested growth under prolonged nitrogen deficiency could be fully restored upon subculturing in freshly prepared ASN III medium containing nitrogen (NaNO3). The present study demonstrates the capability of a non-nitrogen-fixer to withstand nitrogen stress making it an ecologically successful organism in the marine environment. The above pleiotropic effects of nitrogen deficiency also demonstrate that nitrogen plays a crucial role in growth and metabolism of marine cyanobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...