Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Future Virol ; 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074312

RESUMO

Aim: Sotrovimab is an engineered human monoclonal antibody that binds a conserved region of the SARS-CoV-2 spike protein. The COMET-ICE phase III study evaluated sotrovimab for treatment of mild to moderate COVID-19 in nonhospitalized participants with ≥1 risk factor for severe disease progression. Materials & methods: We evaluated the presence of circulating SARS-CoV-2 variants of concern or interest (VOCs/VOIs) and characterized the presence of baseline, post-baseline and emergent amino acid substitutions detected in the epitope of sotrovimab in SARS-CoV-2. Results: None of the sotrovimab-treated participants with baseline epitope substitutions, and 1 of 48 sotrovimab-treated participants with post-baseline epitope substitutions, met the primary clinical endpoint for progression. Conclusion: Overall, progression was not associated with identified VOC/VOI or the presence of epitope substitutions in sotrovimab-treated participants.


Analysis of the genetics of the SARS-CoV-2 virus from participants in a clinical study for treatment of COVID-19 In a large clinical study, the ability of the monoclonal antibody sotrovimab to treat patients with mild to moderate COVID-19 was looked at. This paper focuses on the genetics of the SARS-CoV-2 viruses from participants in this clinical study. Overall, most participants in the study were infected with the original 'wild type' variant of SARS-CoV-2. We also looked for changes in the virus at the positions on the viral spike protein where sotrovimab binds. In participants treated with sotrovimab, changes in the virus at the site where sotrovimab binds on the viral surface protein were not associated with negative outcomes in participants. Clinical Trial Registration: NCT04545060 (ClinicalTrials.gov).

2.
Nature ; 621(7979): 592-601, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648855

RESUMO

Currently circulating SARS-CoV-2 variants have acquired convergent mutations at hot spots in the receptor-binding domain1 (RBD) of the spike protein. The effects of these mutations on viral infection and transmission and the efficacy of vaccines and therapies remains poorly understood. Here we demonstrate that recently emerged BQ.1.1 and XBB.1.5 variants bind host ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1, XBB.1 and BN.1 RBDs bound to the fragment antigen-binding region of the S309 antibody (the parent antibody for sotrovimab) and human ACE2 explain the preservation of antibody binding through conformational selection, altered ACE2 recognition and immune evasion. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1 and hamsters challenged with XBB.1.5. Vaccine-elicited human plasma antibodies cross-react with and trigger effector functions against current Omicron variants, despite a reduced neutralizing activity, suggesting a mechanism of protection against disease, exemplified by S309. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring the role of persistent immune imprinting.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Reações Cruzadas , Evasão da Resposta Imune , Fusão de Membrana , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Mutação , Células B de Memória/imunologia , Vacinas contra COVID-19/imunologia
3.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36711984

RESUMO

Currently circulating SARS-CoV-2 variants acquired convergent mutations at receptor-binding domain (RBD) hot spots. Their impact on viral infection, transmission, and efficacy of vaccines and therapeutics remains poorly understood. Here, we demonstrate that recently emerged BQ.1.1. and XBB.1 variants bind ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1 and XBB.1 RBDs bound to human ACE2 and S309 Fab (sotrovimab parent) explain the altered ACE2 recognition and preserved antibody binding through conformational selection. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1, the variant displaying the greatest loss of neutralization. Moreover, in several donors vaccine-elicited plasma antibodies cross-react with and trigger effector functions against Omicron variants despite reduced neutralizing activity. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring persistent immune imprinting. Our findings suggest that this previously overlooked class of cross-reactive antibodies, exemplified by S309, may contribute to protection against disease caused by emerging variants through elicitation of effector functions.

4.
Biomedicines ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35203445

RESUMO

Poxviridae have developed a plethora of strategies to evade innate and adaptive immunity. In this review, we focused on the vaccinia virus E3 protein, encoded by the E3L gene. E3 is present within the Chordopoxvirinae subfamily (with the exception of the avipoxviruses and molluscum contagiosum virus) and displays pleiotropic effects on the innate immune system. Initial studies identified E3 as a double-stranded RNA (dsRNA)-binding protein (through its C terminus), able to inhibit the activation of protein kinase dependent on RNA (PKR) and the 2'5'-oligoadenylate synthetase (OAS)/RNase L pathway, rendering E3 a protein counteracting the type I interferon (IFN) system. In recent years, N-terminal mutants of E3 unable to bind to Z-form nucleic acids have been shown to induce the cellular death pathway necroptosis. This pathway was dependent on host IFN-inducible Z-DNA-binding protein 1 (ZBP1); full-length E3 is able to inhibit ZBP1-mediated necroptosis. Binding to what was identified as Z-RNA has emerged as a novel mechanism of counteracting the type I IFN system and has broadened our understanding of innate immunity against viral infections. This article gives an overview of the studies leading to our understanding of the vaccinia virus E3 protein function and its involvement in viral pathogenesis. Furthermore, a short summary of other viral systems is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...