Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 289: 105006, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37717723

RESUMO

Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, the interactions between pure cultures of P. entomophila 23S and Cmm were investigated. First, the population dynamics of each bacterium during the interaction was determined using the selective media. Second, the amount of anti-Cmm compound produced by P. entomophila 23S in the presence of Cmm was quantified using HPLC. Lastly, a label-free shotgun proteomics study of P. entomophila 23S, Cmm, and a co-culture was conducted to understand the effects of the interaction of each bacterium at the proteomic level. Compared with the pure culture grown, the total number of proteins decreased in the interaction for both bacteria. P. entomophila 23S secreted stress-related proteins, such as chaperonins, peptidases, ABC-transporters and elongation factors. The bacterium also produced more proteins related with purine, pyrimidine, carbon and nitrogen metabolisms in the presence of Cmm. The population enumeration study revealed that the Cmm population declined dramatically during the interaction, while the population of P. entomophila 23S maintained. The quantification of anti-Cmm compound indicated that P. entomophila 23S produced significantly higher amount of anti-Cmm compound when it was cultured with Cmm. Overall, the study suggested that P. entomophila 23S, although is cidal to Cmm, was also negatively affected by the presence of Cmm, while trying to adapt to the stress condition, and that such an environment favored increased production of the anti-Cmm compound by P. entomophila 23S. SIGNIFICANCE: Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, secreted proteome of pure cultures of P. entomophila 23S and Cmm, and also of a co-culture was first time identified. Furthermore, the study found that P. entomophila strain 23S produced significantly higher amount of anti-Cmm compound when the bacterium was grown together with Cmm. Co-culture enhancing anti-Cmm compound production by P. entomophila 23S is useful information, particularly from a commercial point of view of biocontrol application, and for scale-up of anti-Cmm compound production.


Assuntos
Proteoma , Proteômica , Clavibacter , Doenças das Plantas/microbiologia
2.
Front Microbiol ; 14: 1206152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700863

RESUMO

Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.

3.
Front Microbiol ; 14: 1184158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601342

RESUMO

Lipo-chito-oligosaccharide (LCO-from Bradyrhizobium japonicum) and thuricin 17 (Th17-from Bacillus thuringiensis) are bacterial signal compounds from the rhizosphere of soybean that have been shown to enhance plant growth in a range of legumes and non-legumes. In this study, an attempt to quantify phytohormones involved in the initial hours after exposure of Arabidopsis thaliana to these compounds was conducted using UPLC-ESI-MS/MS. A petri-plate assay was conducted to screen for drought stress tolerance to PEG 8000 infusion and plant growth was studied 21-days post-stress. Arabidopsis thaliana plants grown in trays with drought stress imposed by water withhold were used for free proline determination, elemental analysis, and untargeted proteomics using LC-MS/MS studies. At 24 h post-exposure to the signal compounds under optimal growth conditions, Arabidopsis thaliana rosettes varied in their responses to the two signals. While LCO-treated rosettes showed a decrease in total IAA, cytokinins, gibberellins, and jasmonic acid, increases in ABA and SA was very clear. Th17-treated rosettes, on the other hand, showed an increase in IAA and SA. Both treatments resulted in decreased JA levels. Under severe drought stress imposed by PEG 8000 infusion, LCO and Th17 treatments were found to significantly increase fresh and dry weight over drought-stressed control plates, indicating that the presence of the signaling compounds decreased the negative effects experienced by the plants. Free proline content increased in LCO- and Th17-treated plants after water-withhold drought stress. Elemental analysis showed a significant increase in carbon percentage at the lower concentration of Th17. Untargeted proteomics revealed changes in the levels of drought-specific ribosomal proteins, glutathione S-transferase, late embryogenesis proteins, vegetative storage proteins 1 and 2, thaumatin-like proteins, and those related to chloroplast and carbon metabolism. The roles of some of these significantly affected proteins detected under drought stress are discussed.

4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047598

RESUMO

Agriculture involving industrial fertilizers is another major human made contributing factor to soil pH variation after natural factors such as soil parent rock, weathering time span, climate, and vegetation. The current study assessed the potential effect of cell-free supernatant (CFS) obtained from Bacillus subtilis EB2004S and Lactobacillus helveticus EL2006H cultured at three pH levels (5, 7, and 8) on potato (var Goldrush) growth enhancement in a greenhouse pot experiment. The results showed that CFSs obtained from B. subtilis EB2004S and L. helveticus EL2006H cultured at pH 5 significantly improved photosynthetic rates, stomatal conductance, root fresh weight, and whole plant fresh weight. interactive effects of pot pH and that of CFSs obtained from pH 5 influenced chlorophyll, plant height, and shoot and whole plant fresh weight. Moreover, treatment 52EB2004S~0.4% initiated early tuberization for potato grown at pH 7 and 8. Potato grown at pH 5, which received a 72EB2004S~0.4% CFS treatment, had greater whole plant fresh and dry weight than that treated with L. helveticus EL2006H CFS and a positive control. Taken together, the findings of this study are unique in that it probed the effect of CFS produced under differing pH conditions which revealed a new possibility to mitigate stresses in plants.


Assuntos
Lactobacillus helveticus , Solanum tuberosum , Humanos , Bacillus subtilis , Solo , Concentração de Íons de Hidrogênio
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499471

RESUMO

It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.


Assuntos
Bacillus subtilis , Lactobacillus helveticus , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Concentração de Íons de Hidrogênio
6.
Front Plant Sci ; 13: 1030985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438103

RESUMO

Salt stress is a major threat to modern agriculture, significantly affecting plant growth and yield, and causing substantial economic losses. At this crucial time of increasing climate change conditions, soil salinity will continue to develop and become an even more serious challenge to crop agriculture. Hence, there is a pressing need for sustainable techniques in agricultural production that could meet the dual challenges of crop productivity and environmental instability. The use of biostimulants in agricultural production has greatly influenced plant health and global food production. In particular, the application of bioactive materials produced by beneficial microbes is becoming a common practice in agriculture and provides numerous benefits to plant growth and resistance to stressful conditions. In this research two biostimulants; a type of plant secondary metabolite (flavonoids) and a microbe-based material (CFS: Cell-Free Supernatant) containing active compounds secreted by a novel bacterial strain isolated from Amphecarpaea bracteata root nodules (Devosia sp - SL43), have been utilized to improve the growth and stress resistance of two major oil seed crops; canola and soybean, under optimal and salt stress conditions. Our findings suggested significant improvements in crop growth of canola and soybean following the application of both biostimulants. Under optimal growth conditions, soybean growth was significantly affected by foliar spray of flavonoids with increases in shoot fresh and dry weight, and leaf area, by 91, 99.5, and 73%, respectively. However, soybean growth was unaffected by flavonoids under salt stress. In contrast, CFS with a meaningful capacity to mitigate the negative effects of salinity stress improved soybean shoot fresh biomass, dry biomass, and leaf area by 128, 163 and 194%, respectively, under salt stress conditions. Canola was less responsive to both biostimulants, except for canola root variables which were substantially improved by flavonoid spray. Since this was the first assessment of these materials as foliar sprays, we strongly encourage further experimentation to confirm the findings reported here and to determine the full range of applicability of each of these potential technologies.

7.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684348

RESUMO

Climate change, environmental pollution and associated abiotic stresses are beginning to meaningfully affect agricultural production worldwide. Salt stress is, however, one of the most important threats that significantly impairs plant growth and development. Plants in their early growth stages such as seed germination, seed emergence and early seedling growth are very sensitive to salt stress. Among the range of sustainable techniques adopted to improve seed germination and early plant growth is seed priming; however, with the use of ecofriendly substances, this is one of the most effective and economically viable techniques to improve seed tolerance against such environmental stresses. For instance, priming with appropriate non-synthetic compounds including microbial biostimulants are prominent ways to sustainably address these challenges. Therefore, in this research, by using the "priming technique", two biostimulants were tested for their potential as sustainable approaches to improve canola and soybean seed germination under salt stress and optimal growth conditions. Canola and soybean seeds were primed with flavonoids extracted from citrus fruits (flavopriming) and cell-free supernatant (CFS; produced by a novel strain of Devosia sp.-SL43), alone and in combination, and exposed to low-higher levels of salt stress and ideal growth conditions. Both biostimulants showed promising effects by significantly improving seed germination of soybean and canola under both ideal and stressful conditions. However, increases in seed germination were greater under salinity stress as flavonoids and CFS with stress amelioration effects showed substantial and statistically significant improvements in seed germination under varying levels of salt stress. In addition, combinations (mixtures) of both biostimulants were tested to determine if their effects might be more additive or multiplicative than the individual applications. However, results suggested incompatibility of both biostimulants as none of the combinations showed better results than that of the individual applications of either flavonoids or CFS. Conceivably, the use of flavonoids and this novel Devosia sp. CFS could be significant plant growth enhancers, perhaps much better than the few other biostimulants and bacterial-based compounds currently in use.


Assuntos
Brassica napus , Citrus , Fabaceae , Sistema Livre de Células , Flavonoides/farmacologia , Germinação , Plântula , Sementes , Glycine max
8.
Front Plant Sci ; 13: 809906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401626

RESUMO

Soil salinity is a major abiotic stressor inhibiting plant growth and development by affecting a range of physiological processes. Plant growth promoting rhizobacteria (PGPR) are considered a sustainable option for alleviation of stress and enhancement of plant growth, yet their mode of action is complex and largely unexplored. In this study, an untargeted proteomic approach provided insights into growth and stress response mechanisms elicited in soybean plants by Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 and co-inoculated with Bradyrhizobium japonicum 532C. The plants were grown under optimal and salt-stressed conditions up to their mid-vegetative stage; shoot growth variables were increased in the bacteria-treated plants. Shotgun proteomics of soybean leaf tissue revealed that a number of proteins related to plant growth and stress tolerance were modulated in the bacterial inoculation treatments. Several key proteins involved in major metabolic pathways of photosynthesis, respiration, and photorespiration were upregulated. These include photosystem I psaK, Rubisco subunits, glyceraldehyde-3-phosphate dehydrogenase, succinate dehydrogenase, and glycine decarboxylase. Similarly, stress response proteins such as catalase and glutathione S-transferase (antioxidants), proline-rich precursor protein (osmolyte), and NADP-dependent malic enzyme (linked to ABA signaling) were increased under salt stress. The functions of proteins related to plant growth and stress adaptation led to an expanded understanding of plant-microbe interactions. These findings suggest that the PGPR strains regulated proteome expression in soybean leaves through multiple signaling pathways, thereby inducing salinity tolerance, and improving plant growth in the presence of this abiotic stress challenge. Data are available via ProteomeXchange with identifier PXD025596.

9.
Front Microbiol ; 13: 1075633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704564

RESUMO

Plant growth promoting microorganisms and their derived compounds, such as cell-free supernatant (CFS), enhance plant growth under stressed and non stressed conditions. Such technology is sustainable and environmentally friendly, which is desirable amidst the climate change threat. The current study evaluated the effect of CFS obtained from Lactobacillus helveticus EL2006H on its ability to enhance mean percentage germination and mean radicle length of corn and soybean, as well as growth parameters of potato, using treatment formulations that consisted of 0.2 and 1.0% [v/v] L. helveticus EL2006H CFS concentrations and 100 mM NaCl and 150 mM NaCl levels. Results show that treatment with 100 mM NaCl lowered percentage germination of corn by 52.63%, at 72 h, and soybean by 50%, at 48 h. Treatment with 100 NaCl +0.2% EL2006H enhanced percentage germination of soybean by 44.37%, at 48 h, in comparison to that of the 100 mM NaCl control. One hundred mM NaCl lowered radicle length of corn and soybean by 38.58 and 36.43%, respectively. Treatment with 100 Mm NaCl +1.0% EL2006H significantly increased radicle length of corn by 23.04%. Treatment with 100 mM NaCl +0.2% EL2006H significantly increased photosynthetic rate, leaf greenness and fresh weight of potato. Increasing NaCl concentration to 150 NaCl lowered the effectiveness of the 0.2% EL2006H CFS on the same growth variables of potato. In general, the lower CFS concentration of 0.2% was more efficient at enhancing germination in soybean while the higher concentration of 1.0% was more efficient at enhancing radicle length of corn. There was an observed variation in the effectiveness of L. helveticus EL2006H CFS across the different CFS concentrations, NaCl levels and crop species studied. In conclusion, based on findings of this study, CFS obtained from L. helveticus can be used as a bio stimulant to enhance growth of corn, soybean and potato. However, further studies need to be conducted, for validation, especially under field conditions, for commercial application.

10.
Sci Rep ; 10(1): 12740, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728116

RESUMO

Plant growth promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and stress alleviators. Their exploitation in agro-ecosystems as an eco-friendly and cost-effective alternative to traditional chemical inputs may positively affect agricultural productivity and environmental sustainability. The present study describes selected rhizobacteria, from a range of origins, having plant growth promoting potential under controlled conditions. A total of 98 isolates (ectophytic or endophytic) from various crop and uncultivated plants were screened, out of which four endophytes (n, L, K and Y) from Phalaris arundinacea, Solanum dulcamara, Scorzoneroides autumnalis, and Glycine max, respectively, were selected in vitro for their vegetative growth stimulating effects on Arabidopsis thaliana Col-0 seedlings with regard to leaf surface area and shoot fresh weight. A 16S rRNA gene sequencing analysis of the strains indicated that these isolates belong to the genera Pseudomonas, Bacillus, Mucilaginibacter and Rhizobium. Strains were then further tested for their effects on abiotic stress alleviation under both Petri-plate and pot conditions. Results from Petri-dish assay indicated strains L, K and Y alleviated salt stress in Arabidopsis seedlings, while strains K and Y conferred increases in fresh weight and leaf area under osmotic stress. Results from subsequent in vivo trials indicated all the isolates, especially strains L, K and Y, distinctly increased A. thaliana growth under both normal and high salinity conditions, as compared to control plants. The activity of antioxidant enzymes (ascorbate peroxidase, catalase and peroxidase), proline content and total antioxidative capacity also differed in the inoculated A. thaliana plants. Furthermore, a study on spatial distribution of the four strains, using either conventional Petri-plate counts or GFP-tagged bacteria, indicated that all four strains were able to colonize the endosphere of A. thaliana root tissue. Thus, the study revealed that the four selected rhizobacteria are good candidates to be explored as plant growth stimulators, which also possess salt stress mitigating property, partially by regulating osmolytes and antioxidant enzymes. Moreover, the study is the first report of Scorzoneroides autumnalis (fall dandelion) and Solanum dulcamara (bittersweet) associated endophytes with PGP effects.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bactérias/classificação , Endófitos/classificação , Proteínas de Arabidopsis/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Endófitos/genética , Endófitos/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Estresse Salino , Microbiologia do Solo
11.
Front Plant Sci ; 11: 634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523595

RESUMO

A plant growing under natural conditions is always associated with a substantial, diverse, and well-orchestrated community of microbes-the phytomicrobiome. The phytomicrobiome genome is larger and more fluid than that of the plant. The microbes of the phytomicrobiome assist the plant in nutrient uptake, pathogen control, stress management, and overall growth and development. At least some of this is facilitated by the production of signal compounds, both plant-to-microbe and microbe back to the plant. This is best characterized in the legume nitrogen fixing and mycorrhizal symbioses. More recently lipo-chitooligosaccharide (LCO) and thuricin 17, two microbe-to-plant signals, have been shown to regulate stress responses in a wide range of plant species. While thuricin 17 production is constitutive, LCO signals are only produced in response to a signal from the plant. We discuss how some signal compounds will only be discovered when root-associated microbes are exposed to appropriate plant-to-microbe signals (positive regulation), and this might only happen under specific conditions, such as abiotic stress, while others may only be produced in the absence of a particular plant-to-microbe signal molecule (negative regulation). Some phytomicrobiome members only elicit effects in a specific crop species (specialists), while other phytomicrobiome members elicit effects in a wide range of crop species (generalists). We propose that some specialists could exhibit generalist activity when exposed to signals from the correct plant species. The use of microbe-to-plant signals can enhance crop stress tolerance and could result in more climate change resilient agricultural systems.

12.
Front Plant Sci ; 9: 1473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405652

RESUMO

Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.

13.
Front Plant Sci ; 7: 1314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625672

RESUMO

Plants, being sessile organisms, are exposed to widely varying environmental conditions throughout their life cycle. Compatible plant-microbe interactions favor plant growth and development, and help plants deal with these environmental challenges. Microorganisms produce a diverse range of elicitor molecules to establish symbiotic relationships with the plants they associate with, in a given ecological niche. Lipo-chitooligosaccharide (LCO) and Thuricin 17 (Th17) are two such compounds shown to positively influence plant growth of both legumes and non-legumes. Arabidopsis thaliana responded positively to treatment with the bacterial signal compounds LCO and Th17 in the presence of salt stress (up to 250 mM NaCl). Shotgun proteomics of unstressed and 250 mM NaCl stressed A. thaliana rosettes (7 days post stress) in combination with the LCO and Th17 revealed many known, putative, hypothetical, and unknown proteins. Overall, carbon and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with these signals. PEP carboxylase, Rubisco-oxygenase large subunit, pyruvate kinase, and proteins of photosystems I and II were some of the noteworthy proteins enhanced by the signals, along with other stress related proteins. These findings suggest that the proteome of A. thaliana rosettes is altered by the bacterial signals tested, and more so under salt stress, thereby imparting a positive effect on plant growth under high salt stress. The roles of the identified proteins are discussed here in relation to salt stress adaptation, which, when translated to field grown crops can be a crucial component and of significant importance in agriculture and global food production. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004742.

14.
PLoS One ; 11(8): e0160660, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560934

RESUMO

Salt stress is an important abiotic stressor affecting crop growth and productivity. Of the 20 percent of the terrestrial earth's surface available as agricultural land, 50 percent is estimated by the United Nations Environment Program to be salinized to the level that crops growing on it will be salt-stressed. Increased soil salinity has profound effects on seed germination and germinating seedlings as they are frequently confronted with much higher salinities than vigorously growing plants, because germination usually occurs in surface soils, the site of greatest soluble salt accumulation. The growth of soybean exposed to 40 mM NaCl is negatively affected, while an exposure to 80 mM NaCl is often lethal. When treated with the bacterial signal compounds lipo-chitooligosaccharide (LCO) and thuricin 17 (Th17), soybean seeds (variety Absolute RR) responded positively at salt stress of up to 150 mM NaCl. Shotgun proteomics of unstressed and 100 mM NaCl stressed seeds (48 h) in combination with the LCO and Th17 revealed many known, predicted, hypothetical and unknown proteins. In all, carbon, nitrogen and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with signals. PEP carboxylase, Rubisco oxygenase large subunit, pyruvate kinase, and isocitrate lyase were some of the noteworthy proteins enhanced by the signals, along with antioxidant glutathione-S-transferase and other stress related proteins. These findings suggest that the germinating seeds alter their proteome based on bacterial signals and on stress, the specificity of this response plays a crucial role in organ maturation and transition from one stage to another in the plants' life cycle; understanding this response is of fundamental importance in agriculture and, as a result, global food security. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004106.


Assuntos
Bacteriocinas/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Espectrometria de Massas , Cloreto de Sódio/farmacologia , Glycine max/crescimento & desenvolvimento , Estresse Fisiológico , Fatores de Tempo
15.
Front Plant Sci ; 6: 909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579159

RESUMO

Bacteria produce and excrete a versatile and dynamic suit of compounds to defend against microbial competitors and mediate local population dynamics. These include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic enzymes, metabolic by-products, proteinaceous exotoxins, and ribosomally produced antimicrobial peptides (bacteriocins). Most bacteria produce at least one bacteriocin. Bacteriocins are of interest in the food industry as natural preservatives and in the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin produced by Escherichia coli is a model bacteriocin). Recent studies have projected use of bacteriocins in veterinary medicine and in agriculture, as biostimulants of plant growth and development and as biocontrol agents. For example, bacteriocins such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk melon plant growth. Thuricin 17 (Th17) is the only bacteriocin studied extensively for plant growth promotion, including at the molecular level. Th17 functions as a bacterial signal compound, promoting plant growth in legumes and non-legumes. In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-old A. thaliana rosettes led to >2-fold changes in activation of the carbon and energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress, the control plants under osmotic-shock shut down most of carbon-metabolism and activated energy-metabolism and antioxidant pathways. Th17 treated plants, at 250 mM NaCl, retained meaningful levels of the light harvesting complex, photosystems I and II proteins and energy and antioxidant pathways were activated, so that rosettes could better withstand the salt stress. In Glycine max, Th17 helped seeds germinate in the presence of NaCl stress, and was most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary, and human medicine.

16.
Front Plant Sci ; 6: 709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442023

RESUMO

Higher plants have evolved intimate, complex, subtle, and relatively constant relationships with a suite of microbes, the phytomicrobiome. Over the last few decades we have learned that plants and microbes can use molecular signals to communicate. This is well-established for the legume-rhizobia nitrogen-fixing symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within the phytomircobiome communicate among themselves through quorum sensing and other mechanisms. Plants also detect materials produced by potential pathogens and activate pathogen-response systems. This intercommunication dictates aspects of plant development, architecture, and productivity. Understanding this signaling via biochemical, genomics, proteomics, and metabolomic studies has added valuable knowledge regarding development of effective, low-cost, eco-friendly crop inputs that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome engineering: manipulating the beneficial consortia that manufacture signals/products that improve the ability of the plant-phytomicrobiome community to deal with various soil and climatic conditions, leading to enhanced overall crop plant productivity.

17.
Front Plant Sci ; 6: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972876

RESUMO

Seeds and young seedlings often encounter high soluble salt levels in the upmost soil layers, impeding vigorous growth by affecting root establishment. Computed tomography (CT) scanning used at low X-ray doses can help study root development in such conditions non-destructively, because plants are allowed to grow throughout the experiment. Using a high-resolution Toshiba XVision CT scanner, we studied corn (Zea mays L.) root growth under optimal and salt-stressed conditions in 3D and on a weekly basis over 3 weeks. Two groups of three corn plants were grown in the controlled environment of a growth chamber, in mid-sized plastic pots filled with sieved and autoclaved sand. Seedlings were subjected to first CT scanning 1 week after seed planting. Our main research objectives concerning root systems were: (i) to quantify structural complexity from fractal dimensions estimated on skeletal 3-D images built from CT scanning data; (ii) to measure growth from volumes and lengths and the derived relative rates and increments, after isolating primary and secondary roots from the soil medium in CT scanning data; and (iii) to assess differences in complexity and growth per week and over Weeks 1-3 for groups of corn plants. Differences between groups were present from Week 1; starting in Week 2 secondary roots were present and could be isolated, which refined the complexity and growth analyses of root systems. Besides expected Week main effects (P < 0.01 or 0.05), Week × Group interaction (P < 0.05 or 0.10), and Group main effects were observed. Graphical, quantitative, and statistical analyses of CT scanning data were thus completed at an unprecedented level, and provided new and important insights regarding root system development. Repeated CT scanning is the key to a better understanding of the establishment in the soil medium of crop plants such as corn and the assessment of salt stress effects on developing root systems, in complexity, volume, and length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...