Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 7(4): 2200234, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020622

RESUMO

The paradigm shift from traditional petroleum-based non-recyclable thermosets to biobased repeatedly recyclable materials is required to move toward circular bioeconomy. Here, two mechanically and chemically recyclable extended vanillin-derived epoxy thermosets are successfully fabricated by introduction of Schiff-base/imine covalent dynamic bonds. Thermoset 1 (T1) is based on linear monomer 1 (M1) with two alcohol end groups and one imine bond, while thermoset 2 (T2) is based on branched monomer 2 (M2) with three alcohol end-groups and three imine-groups. Thermosets are obtained by reaction of monomer 1 (M1) and monomer 2 (M2) with trimethylolpropane triglycidyl ether. The structure of the monomers and thermosets is confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopic techniques. Both thermosets exhibit good thermal and mechanical properties and they are stable in common organic solvents. Furthermore, they can be thermally reprocessed through compression molding with good recovery of the mechanical properties. Last but not least, the fabricated thermosets can be rapidly and completely chemically recycled to water-soluble aldehydes and amines by imine hydrolysis at room temperature in 0.1 m HCl solution. This is promising for development of future materials with multiple circularity by different routes.

2.
Biomacromolecules ; 23(1): 150-162, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34932316

RESUMO

This research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB2 monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses. These HBPs were conveniently spin-coated on a silicon substrate, which exhibited significant antibacterial effect against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The presence of methoxy substituents enhanced the antimicrobial effect, and the resulting polymers showed negligible leakage in water. Finally, the polymers with the methoxy functionality exhibited excellent biocompatibility according to the results of hemolysis and MTT assay, which may facilitate their biomedical applications.


Assuntos
Anti-Infecciosos , Poliésteres , Aldeídos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Indóis/farmacologia , Lignina/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...