Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2318969121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513105

RESUMO

Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.


Assuntos
Ferredoxinas , Ferro , Ferredoxinas/metabolismo , Ferro/metabolismo , Hidrogênio/metabolismo , Elétrons , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Oxirredução , Flavinas/metabolismo
2.
FEBS J ; 291(3): 527-546, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899720

RESUMO

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.


Assuntos
Clostridiales , Proteínas Ferro-Enxofre , Xantina Desidrogenase , Animais , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Ferro/metabolismo , Oxirredução , Flavinas/metabolismo , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mamíferos/metabolismo
3.
FEBS J ; 290(21): 5171-5195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522421

RESUMO

The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 µm and 4.08 ± 0.8 µm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.


Assuntos
Dimetil Sulfóxido , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Peróxido de Hidrogênio , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Oxirredução , Flavinas/metabolismo , Cinética , Mononucleotídeo de Flavina/metabolismo
4.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 479-497, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259836

RESUMO

Vibrio spp. play a crucial role in the global recycling of the highly abundant recalcitrant biopolymer chitin in marine ecosystems through their ability to secrete chitin-degrading enzymes to efficiently hydrolyse chitinous materials and use them as their major carbon source. In this study, the first crystal structures of a complete four-domain chitin-active AA10 lytic polysaccharide monooxygenase from the chitinolytic bacterium Vibrio campbellii type strain ATCC BAA-1116 are reported. The crystal structures of apo and copper-bound VhLPMO10A were resolved as homodimers with four distinct domains: an N-terminal AA10 catalytic (CatD) domain connected to a GlcNAc-binding (GbpA_2) domain, followed by a module X domain and a C-terminal carbohydrate-binding module (CBM73). Size-exclusion chromatography and small-angle X-ray scattering analysis confirmed that VhLPMO10A exists as a monomer in solution. The active site of VhLPMO10A is located on the surface of the CatD domain, with three conserved residues (His1, His98 and Phe170) forming the copper(II)-binding site. Metal-binding studies using synchrotron X-ray absorption spectroscopy and X-ray fluorescence, together with electron paramagnetic resonance spectroscopy, gave consistently strong copper(II) signals in the protein samples, confirming that VhLPMO10A is a copper-dependent enzyme. ITC binding data showed that VhLPMO10A could bind various divalent cations but bound most strongly to copper(II) ions, with a Kd of 0.1 ± 0.01 µM. In contrast, a Kd of 1.9 nM was estimated for copper(I) ions from redox-potential measurements. The presence of ascorbic acid is essential for H2O2 production in the reaction catalysed by VhLPMO10A. MALDI-TOF MS identified VhLPMO10A as a C1-specific LPMO, generating oxidized chitooligosaccharide products with different degrees of polymerization (DP2ox-DP8ox). This new member of the chitin-active AA10 LPMOs could serve as a powerful biocatalyst in biofuel production from chitin biomass.


Assuntos
Quitina , Vibrio , Quitina/metabolismo , Oxigenases de Função Mista/química , Cobre/metabolismo , Ecossistema , Peróxido de Hidrogênio , Proteínas de Bactérias/química , Polissacarídeos/metabolismo
5.
BMC Oral Health ; 23(1): 288, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179287

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of trehalose oral spray to relieve radiation-induced xerostomia on a randomized controlled trial (RCT). METHODS: Prior to RCT, the effect of trehalose (5-20%) on the epithelial growth of fetal mouse salivary gland (SG) explants was evaluated to confirm if 10% trehalose exerted the best epithelial outcomes. Participants who completed radiotherapy for head and neck cancer (HNC) treatment were enrolled in a double-blind RCT, according to inclusion and exclusion criteria as per the CONSORT statement. The experimental group (n = 35) received 10% trehalose spray, while the control group (n = 35) received carboxymethylcellulose (CMC) spray to apply intra-orally 4 times/day for 14 days. Salivary pH and unstimulated salivary flow rate were recorded pre- and post-interventions. The Xerostomia-related Quality of Life scale (XeQoLs) was filled, and scores assessed post-interventions. RESULTS: In the SG explant model, pro-acinar epithelial growth and mitosis was supported by 10% topical trehalose. As for RCT outcomes, salivary pH and unstimulated salivary flow rate were significantly improved after use of 10% trehalose spray when compared to CMC (p < 0.05). Participants reported an improvement of XeQoLs dimension scores after using trehalose or CMC oral sprays in terms of physical, pain/discomfort, and psychological dimensions (p < 0.05), but not social (p > 0.05). When comparing between CMC and trehalose sprays, XeQoLs total scores were not statistically different (p > 0.05). CONCLUSIONS: The 10% trehalose spray improved salivary pH, unstimulated salivary flow rate, and the quality-of-life dimensions linked with physical, pain/discomfort, and psychological signs. The clinical efficacy of 10% trehalose spray was equivalent with CMC-based saliva substitutes for relieving radiation-induced xerostomia; therefore, trehalose may be suggested in alternative to CMC-based oral spray.(Thai Clinical Trials Registry; https://www.thaiclinicaltrials.org/ TCTR20190817004).


Assuntos
Carboximetilcelulose Sódica , Neoplasias de Cabeça e Pescoço , Trealose , Xerostomia , Carboximetilcelulose Sódica/uso terapêutico , Neoplasias de Cabeça e Pescoço/radioterapia , Sprays Orais , Trealose/farmacologia , Trealose/uso terapêutico , Xerostomia/tratamento farmacológico , Xerostomia/etiologia , Humanos
6.
Arch Biochem Biophys ; 734: 109498, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572346

RESUMO

Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes the deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. In contrast to ADO's native activity, which requires electrons from the Fd/FNR electron transfer complex, ADO's aldehyde reduction activity requires only NAD(P)H. Our results demonstrated that the yield of alcohol products could be affected by oxygen concentration and the type of aldehyde. Under strictly anaerobic conditions, yields of octanol were up to 31%. Moreover, metal cofactors are not involved in the aldehyde reductase activity of PmADO because the yields of alcohols obtained from apoenzyme and holoenzyme treated with various metals were similar under anaerobic conditions. In addition, PmADO prefers medium-chain aldehydes, specifically octanal (kcat/Km around 15 × 10-3 µM-1min-1). The findings herein highlight a new activity of PmADO, which may be applied as a biocatalyst for the industrial synthesis of fatty alcohols.


Assuntos
Aldeído Redutase , Cianobactérias , Álcoois Graxos , Oxigenases , Aldeídos , Oxigênio
7.
BMC Oral Health ; 22(1): 58, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246095

RESUMO

BACKGROUND: Although topical steroids are an effective treatment for oral lichen planus, they can have suppressive effects on oral immunity and predispose the patients to Candida overgrowth. Lactoferrin is a crucial local immunity protein in the oral cavity with important antimicrobial activity. The aim of this study was to prospectively investigate salivary lactoferrin secretion levels and Candida colonization in oral lichen planus patients treated with fluocinolone acetonide 0.1% in orabase. METHODS: Saliva samples were collected from 15 oral lichen planus subjects who had never received topical steroid treatment prior to this study and 15 healthy volunteers to determine their salivary lactoferrin levels using an enzyme-linked immunosorbent assay and to investigate the presence of oral Candida species at baseline and 3 months after treatment with fluocinolone acetonide 0.1% in orabase. Statistical analysis was performed to compare lactoferrin secretion and Candida colonization levels between the groups using the Mann-Whitney U test for independent data or the Wilcoxon Signed-Rank test for paired data. RESULTS: The salivary lactoferrin secretion level was not significantly different between the control group and oral lichen planus patients or between before and after treatment with fluocinolone acetonide 0.1% in orabase (P > 0.05). Candida was detected in 11 (73.33%) healthy volunteers, 8 (53.33%) oral lichen planus patients before treatment, and 9 (60%) oral lichen planus patients after treatment with fluocinolone acetonide 0.1% in orabase. There was no significant difference in Candida counts between the groups (P > 0.05). CONCLUSION: Our study indicates that using fluocinolone acetonide 0.1% in orabase to treat oral lichen planus for 3 months did not affect salivary lactoferrin protein secretion or Candida carriage. Trial registration The trial was registered at the Thai Clinical Trials Registry (TCTR identifier: TCTR20200723002).


Assuntos
Lactoferrina , Líquen Plano Bucal , Candida , Fluocinolona Acetonida/uso terapêutico , Humanos , Lactoferrina/metabolismo , Lactoferrina/uso terapêutico , Líquen Plano Bucal/tratamento farmacológico , Líquen Plano Bucal/metabolismo , Estudos Prospectivos
8.
Sci Rep ; 11(1): 18726, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548536

RESUMO

Patients with systemic lupus erythematosus (SLE) have increased inflammatory cytokines, leading to periodontitis and alveolar bone loss. However, the mechanisms driving this phenomenon are still unknown. Here, we have identified novel therapeutic targets for and mediators of lupus-mediated bone loss using RNA-sequencing (RNA-seq) in a FcγRIIB-/- mouse model of lupus associated osteopenia. A total of 2,710 upregulated and 3,252 downregulated DEGs were identified. The GO and KEGG annotations revealed that osteoclast differentiation, bone mineralization, ossification, and myeloid cell development were downregulated. WikiPathways indicated that Hedgehog, TNFα NF-κB and Notch signaling pathway were also decreased. We identified downregulated targets, Sufu and Serpina12, that have important roles in bone homeostasis. Sufu and Serpina12 were related to Hedgehog signaling proteins, including Gli1, Gli2, Gli3, Ptch1, and Ptch2. Gene knockdown analysis demonstrated that Sufu, and Serpina12 contributed to osteoclastogenesis and osteoblastogenesis, respectively. Osteoclast and osteoblast marker genes were significantly decreased in Sufu-deficient and Serpina12-deficient cells, respectively. Our results suggest that alterations in Hedgehog signaling play an important role in the pathogenesis of osteopenia in FcγRIIB-/- mice. The novel DEGs and pathways identified in this study provide new insight into the underlying mechanisms of mandibular bone loss during lupus development.


Assuntos
Mandíbula/patologia , Osteoporose/genética , Receptores de IgG/genética , Animais , Camundongos , Camundongos Knockout
9.
J Biol Chem ; 296: 100467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639166

RESUMO

The C1 (reductase) subunit of 4-hydroxy-phenylacetate (4-HPA) 3-hydroxylase (HPAH) from the soil-based bacterium Acinetobacterbaumannii catalyzes NADH oxidation by molecular oxygen, with hydrogen peroxide as a by-product. 4-HPA is a potent allosteric modulator of C1, but also a known urinary biomarker for intestinal bacterial imbalance and for some cancers and brain defects. We thus envisioned that C1 could be used to facilitate 4-HPA detection. The proposed test protocol is simple and in situ and involves addition of NADH to C1 in solution, with or without 4-HPA, and direct acquisition of the H2O2 current with an immersed Prussian Blue-coated screen-printed electrode (PB-SPE) assembly. We confirmed that cathodic H2O2 amperometry at PB-SPEs is a reliable electrochemical assay for intrinsic and allosterically modulated redox enzyme activity. We further validated this approach for quantitative NADH electroanalysis and used it to evaluate the activation of NADH oxidation of C1 by 4-HPA and four other phenols. Using 4-HPA, the most potent effector, allosteric activation of C1 was related to effector concentration by a simple saturation function. The use of C1 for cathodic biosensor analysis of 4-HPA is the basis of the development of a simple and affordable clinical routine for assaying 4-HPA in the urine of patients with a related disease risk. Extension of this principle to work with other allosteric redox enzymes and their effectors is feasible.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Fenilacetatos/química , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Biomarcadores , Catálise , Eletrodos , Humanos , Peróxido de Hidrogênio/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , NAD/química , Oxirredução , Oxirredutases/metabolismo , Fenilacetatos/metabolismo
10.
FEBS J ; 288(3): 1008-1026, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32329961

RESUMO

The flavin-based electron bifurcation (FBEB) system from Acidaminococcus fermentans is composed of the electron transfer flavoprotein (EtfAB) and butyryl-CoA dehydrogenase (Bcd). α-FAD binds to domain II of the A-subunit of EtfAB, ß-FAD to the B-subunit of EtfAB and δ-FAD to Bcd. NADH reduces ß-FAD to ß-FADH- , which bifurcates one electron to the high potential α-FAD•- semiquinone followed by the other to the low potential ferredoxin (Fd). As deduced from crystal structures, upon interaction of EtfAB with Bcd, the formed α-FADH- approaches δ-FAD by rotation of domain II, yielding δ-FAD•- . Repetition of this process leads to a second reduced ferredoxin (Fd- ) and δ-FADH- , which reduces crotonyl-CoA to butyryl-CoA. In this study, we measured the redox properties of the components EtfAB, EtfaB (Etf without α-FAD), Bcd, and Fd, as well as of the complexes EtfaB:Bcd, EtfAB:Bcd, EtfaB:Fd, and EftAB:Fd. In agreement with the structural studies, we have shown for the first time that the interaction of EtfAB with Bcd drastically decreases the midpoint reduction potential of α-FAD to be within the same range of that of ß-FAD and to destabilize the semiquinone of α-FAD. This finding clearly explains that these interactions facilitate the passing of electrons from ß-FADH- via α-FAD•- to the final electron acceptor δ-FAD•- on Bcd. The interactions modulate the semiquinone stability of δ-FAD in an opposite way by having a greater semiquinone stability than in free Bcd.


Assuntos
Acidaminococcus/metabolismo , Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Butiril-CoA Desidrogenase/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Flavinas/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/química , Benzoquinonas/química , Butiril-CoA Desidrogenase/química , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons/química , Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Biológicos , Oxirredução , Ligação Proteica , Espectrofotometria
11.
DNA Repair (Amst) ; 97: 103024, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302090

RESUMO

Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Hidrólise , Cinética
12.
J Biol Chem ; 296: 100124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33239361

RESUMO

Electron bifurcation uses free energy from exergonic redox reactions to power endergonic reactions. ß-FAD of the electron transfer flavoprotein (EtfAB) from the anaerobic bacterium Acidaminococcus fermentans bifurcates the electrons of NADH, sending one to the low-potential ferredoxin and the other to the high-potential α-FAD semiquinone (α-FAD•-). The resultant α-FAD hydroquinone (α-FADH-) transfers one electron further to butyryl-CoA dehydrogenase (Bcd); two such transfers enable Bcd to reduce crotonyl-CoA to butyryl-CoA. To get insight into the mechanism of these intricate reactions, we constructed an artificial reaction only with EtfAB containing α-FAD or α-FAD•- to monitor formation of α-FAD•- or α-FADH-, respectively, using stopped flow kinetic measurements. In the presence of α-FAD, we observed that NADH transferred a hydride to ß-FAD at a rate of 920 s-1, yielding the charge-transfer complex NAD+:ß-FADH- with an absorbance maximum at 650 nm. ß-FADH- bifurcated one electron to α-FAD and the other electron to α-FAD of a second EtfAB molecule, forming two stable α-FAD•-. With α-FAD•-, the reduction of ß-FAD with NADH was 1500 times slower. Reduction of ß-FAD in the presence of α-FAD displayed a normal kinetic isotope effect (KIE) of 2.1, whereas the KIE was inverted in the presence of α-FAD•-. These data indicate that a nearby radical (14 Å apart) slows the rate of a hydride transfer and inverts the KIE. This unanticipated flavin chemistry is not restricted to Etf-Bcd but certainly occurs in other bifurcating Etfs found in anaerobic bacteria and archaea.


Assuntos
Acidaminococcus/metabolismo , Proteínas de Bactérias/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Flavinas/metabolismo , Transporte de Elétrons , Cinética , Oxirredução , Filogenia
13.
FEBS J ; 288(10): 3246-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289305

RESUMO

Bacterial luciferase catalyzes a bioluminescent reaction by oxidizing long-chain aldehydes to acids using reduced FMN and oxygen as co-substrates. Although a flavin C4a-peroxide anion is postulated to be the intermediate reacting with aldehyde prior to light liberation, no clear identification of the protonation status of this intermediate has been reported. Here, transient kinetics, pH variation, and site-directed mutagenesis were employed to probe the protonation state of the flavin C4a-hydroperoxide in bacterial luciferase. The first observed intermediate, with a λmax of 385 nm, transformed to an intermediate with a λmax of 375 nm. Spectra of the first observed intermediate were pH-dependent, with a λmax of 385 nm at pH < 8.5 and 375 at pH > 9, correlating with a pKa of 7.7-8.1. These data are consistent with the first observed flavin C4a intermediate at pH < 8.5 being the protonated flavin C4a-hydroperoxide, which loses a proton to become an active flavin C4a-peroxide. Stopped-flow studies of His44Ala, His44Asp, and His44Asn variants showed only a single intermediate with a λmax of 385 nm at all pH values, and none of these variants generate light. These data indicate that His44 variants only form a flavin C4a-hydroperoxide, but not an active flavin C4a-peroxide, indicating an essential role for His44 in deprotonating the flavin C4a-hydroperoxide and initiating chemical catalysis. We also investigated the function of the adjacent His45; stopped-flow data and molecular dynamics simulations identify the role of this residue in binding reduced FMN.


Assuntos
Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Peróxido de Hidrogênio/química , Luciferases Bacterianas/química , Oxigênio/química , Vibrio/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luciferases Bacterianas/genética , Luciferases Bacterianas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Vibrio/enzimologia
14.
Enzymes ; 47: 193-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951824

RESUMO

Several sugar oxidases that catalyze the oxidation of sugars have been isolated and characterized. These enzymes can be classified as flavoenzyme due to the presence of flavin adenine dinucleotide (FAD) as a cofactor. Sugar oxidases have been proposed to be the key biocatalyst in biotransformation of carbohydrates which can potentially convert sugars to provide a pool of intermediates for synthesis of rare sugars, fine chemicals and drugs. Moreover, sugar oxidases have been applied in biosensing of various biomolecules in food industries, diagnosis of diseases and environmental pollutant detection. This review provides the discussions on general properties, current mechanistic understanding, structural determination, biocatalytic application, and biosensor integration of representative sugar oxidase enzymes, namely pyranose 2-oxidase (P2O), glucose oxidase (GO), hexose oxidase (HO), and oligosaccharide oxidase. The information regarding the relationship between structure and function of these sugar oxidases points out the key properties of this particular group of enzymes that can be modified by engineering, which had resulted in a remarkable economic importance.


Assuntos
Biocatálise , Carboidratos/química , Oxirredutases/química , Flavina-Adenina Dinucleotídeo/química , Engenharia de Proteínas
15.
J Biol Chem ; 295(12): 3965-3981, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32014994

RESUMO

Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19F NMR in conjunction with fluorinated substrate analogs to directly measure pKa values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depresses the pKa of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the pKa of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C2 component of HPAH. 19F NMR also revealed a pKa of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C2, respectively, are consistent with pKa tuning by one or more H-bonding interactions. Our implementation of 19F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , 4-Hidroxibenzoato-3-Mono-Oxigenase/genética , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fenilacetatos/química , Fenilacetatos/metabolismo , Rhodococcus/enzimologia , Especificidade por Substrato
16.
ACS Sens ; 4(5): 1270-1278, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968691

RESUMO

We report an amperometric biosensor for the urinary disease biomarker para-hydroxyphenylacetate ( p-HPA) in which the allosteric reductase component of a bacterial hydroxylase, C1-hpah, is electrically wired to glassy carbon electrodes through incorporation into a low-potential Os-complex modified redox polymer. The proposed biosensing strategy depends on allosteric modulation of C1-hpah by the binding of the enzyme activator and analyte p-HPA, stimulating oxidation of the cofactor NADH. The pronounced concentration-dependence of allosteric C1-hpah modulation in the presence of a constant concentration of NADH allowed sensitive quantification of the target, p-HPA. The specific design of the immobilizing redox polymer with suitably low working potential allowed biosensor operation without the risk of co-oxidation of potentially interfering substances, such as uric acid or ascorbic acid. Optimized sensors were successfully applied for p-HPA determination in artificial urine, with good recovery rates and reproducibility and sub-micromolar detection limits. The proposed application of the allosteric enzyme C1-hpah for p-HPA trace electroanalysis is the first successful example of simple amperometric redox enzyme/redox polymer biosensing in which the analyte acts as an effector, modulating the activity of an immobilized biocatalyst. A general advantage of the concept of allosterically modulated biosensing is its ability to broaden the range of approachable analytes, through the move from substrate to effector detection.


Assuntos
Técnicas Biossensoriais/métodos , Oxirredutases/química , Oxirredutases/metabolismo , Fenilacetatos/urina , Regulação Alostérica/efeitos dos fármacos , Bactérias/enzimologia , Biomarcadores/urina , Eletroquímica , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Oxirredução , Fenilacetatos/farmacologia
17.
IET Nanobiotechnol ; 12(4): 423-428, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29768224

RESUMO

p-Hydroxyphenylacetate 3-hydroxylase component 1 (C1) is a useful enzyme for generating reduced flavin and NAD+ intermediates. In this study, poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were used to encapsulate the C1 (PLGA-C1 NPs). Enzymatic activity, stability, and reusability of PLGA-C1 NPs prepared using three different methods [oil in water (o/w), water in oil in water (w/o/w), and solid in oil in water (s/o/w)] were compared. The s/o/w provided the optimal conditions for encapsulation of C1(PLGA-C1,s NPs), giving the highest enzyme activity, stability, and reusability. The s/o/w method improves enzyme activity ∼11 and 9-fold compared to w/o/w (PLGA-C1,w NPs) and o/w (PLGA-C1,o NPs). In addition, s/o/w prepared PLGA-C1,s NPs could be reused 14 times with nearly 50% activity remaining, a much higher reusability compared to PLGA-C1,o NPs and PLGA-C1,w NPs. These nanovesicles were successfully utilised to generate reduced flavin mononucleotide (FMN) and supply this cofactor to a hydroxylase enzyme that has application for synthesising anti-inflammatory compounds. Therefore, this recycling biocatalyst prepared using the s/o/w method is effective and has the potential for use in combination with other enzymes that require reduced FMN. Application of PLGA-C1,s NPs may be possible in additional biocatalytic processes for chemical or biochemical production.


Assuntos
Emulsões/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Composição de Medicamentos/métodos , Emulsões/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
18.
Anal Chem ; 90(9): 5703-5711, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29633834

RESUMO

We report the fabrication of an amperometric NADH biosensor system that employs an allosterically modulated bacterial reductase in an adapted osmium(III)-complex-modified redox polymer film for analyte quantification. Chains of complexed Os(III) centers along matrix polymer strings make electrical connection between the immobilized redox protein and a graphite electrode disc, transducing enzymatic oxidation of NADH into a biosensor current. Sustainable anodic signaling required (1) a redox polymer with a formal potential that matched the redox switch of the embedded reductase and avoided interfering redox interactions and (2) formation of a cross-linked enzyme/polymer film for stable biocatalyst entrapment. The activity of the chosen reductase is enhanced upon binding of an effector, i.e. p-hydroxy-phenylacetic acid ( p-HPA), allowing the acceleration of the substrate conversion rate on the sensor surface by in situ addition or preincubation with p-HPA. Acceleration of NADH oxidation amplified the response of the biosensor, with a 1.5-fold increase in the sensitivity of analyte detection, compared to operation without the allosteric modulator. Repetitive quantitative testing of solutions of known NADH concentration verified the performance in terms of reliability and analyte recovery. We herewith established the use of allosteric enzyme modulation and redox polymer-based enzyme electrode wiring for substrate biosensing, a concept that may be applicable to other allosteric enzymes.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Oxigenases de Função Mista/metabolismo , NAD/metabolismo , Oxirredutases/metabolismo , Polímeros/metabolismo , Acinetobacter baumannii/enzimologia , Regulação Alostérica , Enzimas Imobilizadas/metabolismo , Estrutura Molecular , NAD/química , Oxirredução , Polímeros/química
19.
J Biol Chem ; 292(12): 4818-4832, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28159841

RESUMO

The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health.


Assuntos
Clorofenóis/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/metabolismo , Ralstonia pickettii/enzimologia , Clorofenóis/química , Infecções por Bactérias Gram-Negativas/microbiologia , Halogenação , Humanos , Cinética , Oxigenases de Função Mista/química , Ralstonia pickettii/química , Ralstonia pickettii/metabolismo , Especificidade por Substrato
20.
FEBS J ; 283(5): 860-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709612

RESUMO

3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that contains FAD as a redox-active cofactor. The enzyme catalyzes para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on the enzyme crystal structure, residue His213 is located close to the hydroxyl moiety, whereas Tyr217 is close to the carboxylate group of 3HB. Y217A and Y217S did not show any perturbation of flavin absorption upon addition of 3HB, whereas Y217F has a Kd value for 3HB binding of 7.5 mm, which is ~ 50-fold larger than that found for wild-type enzyme. The results clearly indicate that Tyr217 is necessary for substrate binding. All His213 variants can bind to 3HB with similar affinity as the wild-type enzyme and form C4a-hydroperoxy intermediate. H213S, H213D and H213E produce 2,5-DHB with yields of 28 ± 5%, 52 ± 7% and 92 ± 6%, respectively, whereas H213A cannot catalyze hydroxylation. The results indicate that the interaction between the hydroxyl group of 3HB and residue 213 is important for substrate hydroxylation. Interestingly, the hydroxylation rate constant of H213E (35 s(-1) ) is similar to that of wild-type enzyme (36 s(-1) ) and this variant has an efficiency of hydroxylation (92 ± 6%) similar to the wild-type enzyme (86 ± 2%). Difference spectra of enzyme-bound substrate suggest that 3HB binds to H213E in the phenolic form. The results indicate that His213 and Glu213 in H213E may act as a catalytic base to initiate the substrate deprotonation and facilitate the electrophilic aromatic substitution of 3HB.


Assuntos
Proteínas de Bactérias/química , Flavoproteínas/química , Histidina/química , Oxigenases de Função Mista/química , Rhodococcus/enzimologia , Tirosina/química , Catálise , Domínio Catalítico , Gentisatos/química , Hidroxilação , Cinética , Oxirredução , Oxigênio/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...