Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia Open ; 8 Suppl 1: S82-S89, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939640

RESUMO

OBJECTIVE: In spite of anecdotal reports describing an association between chronic epilepsy and interictal aggressiveness, and of a few studies suggesting that such an association is common in temporal lobe epilepsy, this concept has not been generally accepted by epileptologists. In the course of studies of the long-term consequences of limbic status epilepticus (SE) in juvenile rats, we noticed that experimental animals, unlike littermate controls, could not be housed together because of severe fighting. We now report a study of interictal aggression in those rats. METHODS: Long-term behavioral consequences of lithium/pilocarpine SE were studied 3 months after SE had been induced with lithium and pilocarpine in male Wistar rats at age 28 days. Chronic spontaneous seizures developed in 100% of animals. We tested rats for territorial aggression under the resident-intruder paradigm. We measured the number of episodes of dominance (mounting and pinning), and agonistic behavior (attacks, boxing, and biting). RESULTS: Untreated lithium/pilocarpine SE induced a large increase in aggressive behavior, which involved all aspects of aggression in the resident-intruder paradigm when tested 3 months after SE. The experimental rats were dominant toward the controls, as residents or as intruders, and showed episodes of biting and boxing rarely displayed by controls. They also displayed increased aggressiveness compared with controls when tested against each other. SIGNIFICANCE: This robust model offers an opportunity to better understand the complex relationship between seizures, epilepsy, and aggression, and the role of age, SE vs. recurrent spontaneous seizures, and focal neuronal injury in the long-term behavioral effects of SE.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Pilocarpina/farmacologia , Lítio/farmacologia , Ratos Wistar , Convulsões , Agressão
2.
Neurobiol Dis ; 133: 104537, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454548

RESUMO

The initiation and maintenance phases of cholinergic status epilepticus (SE) are associated with maladaptive trafficking of synaptic GABAA and glutamate receptors. The resulting pharmacoresistance reflects a decrease in synaptic GABAA receptors and increase in NMDA and AMPA receptors, which tilt the balance between inhibition and excitation in favor of the latter. If these changes are important to the pathophysiology of SE, both should be treated, and blocking their consequences should have therapeutic potential. We used a model of benzodiazepine-refractory SE (RSE) (Tetz et al., 2006) and a model of soman-induced SE to test this hypothesis. Treatment of RSE with combinations of the GABAAR agonists midazolam or diazepam and the NMDAR antagonists MK-801 or ketamine terminated RSE unresponsive to high-dose monotherapy with benzodiazepines, ketamine or other antiepileptic drugs (AEDs). It also reduced RSE-associated neuronal injury, spatial memory deficits and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of sc soman-induced SE similarly showed much greater reduction of EEG power by a combination of midazolam with ketamine, compared to midazolam monotherapy. When treating late (40 min after seizure onset), there may not be enough synaptic GABAAR left to be able to restore inhibition with maximal GABAAR stimulation, and further benefit is derived from the addition of an AED which increases inhibition or reduces excitation by a non-GABAergic mechanism. The midazolam-ketamine-valproate combination is effective in terminating RSE. 3-D isobolograms demonstrate positive cooperativity between midazolam, ketamine and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index is increased by combination therapy between GABAAR agonist, NMDAR antagonist and selective AEDs. We compared this drug combination based on the receptor trafficking hypothesis to treatments based on clinical practice. The midazolam-ketamine-valproate combination is far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines. Furthermore, sequential administration of midazolam, ketamine and valproate is far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that we should re-evaluate our traditional treatment of RSE, and that treatment should be based on pathophysiology. The search for a better drug has to deal with the fact that most monotherapy leaves half the problem untreated. The search for a better benzodiazepine should acknowledge the main cause of pharmacoresistance, which is loss of synaptic GABAAR. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm.


Assuntos
Anticonvulsivantes/farmacologia , Inibidores da Colinesterase/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Quimioterapia Combinada/métodos , Ketamina/farmacologia , Masculino , Midazolam/farmacologia , Agonistas Muscarínicos/toxicidade , Agentes Neurotóxicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/toxicidade , Ácido Valproico/farmacologia
3.
Epilepsy Behav ; 101(Pt B): 106367, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636007

RESUMO

The transition from single seizures to status epilepticus (SE) is associated with malaptive trafficking of synaptic gamma-aminobutyric acid (GABAA) and glutamate receptors. The receptor trafficking hypothesis proposes that these changes are key events in the development of pharmacoresistance to antiepileptic drugs (AEDs) during SE, and that blocking their expression will help control drug-refractory SE (RSE). We tested this hypothesis in a model of SE induced by very high-dose lithium and pilocarpine (RSE), and in a model of SE induced by sc soman. Both models are refractory to benzodiazepines when treated 40 min after seizure onset. Our treatments aimed to correct the loss of inhibition because of SE-associated internalization of synaptic GABAA receptors (GABAAR), using an allosteric GABAAR modulator, sometimes supplemented by an AED acting at a nonbenzodiazepine site. At the same time, we reduced excitation because of increased synaptic localization of NMDA and AMPA (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate) receptors (NMDAR, AMPAR (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, N-methyl-D-aspartate receptors)) with an NMDAR channel blocker, since AMPAR changes are NMDAR-dependent. Treatment of RSE with combinations of the GABAAR allosteric modulators midazolam or diazepam and the NMDAR antagonists dizocilpine or ketamine terminated RSE unresponsive to high-dose monotherapy. It also reduced RSE-associated neuronal injury, spatial memory deficits, and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of soman-induced SE also reduced seizures, behavioral deficits, and epileptogenesis. Addition of an AED further improved seizure outcome in both models. Three-dimensional isobolograms demonstrated positive cooperativity between midazolam, ketamine, and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index was increased by combination therapy. The midazolam-ketamine-valproate combination based on the receptor trafficking hypothesis was far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines for the treatment of SE. Furthermore, sequential administration of midazolam, ketamine, and valproate was far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that treatment of RSE should be based at least in part on its pathophysiology. The search for a better treatment should focus on the cause of pharmacoresistance, which is loss of synaptic GABAAR and gain of synaptic glutamate receptors. Both need to be treated. Monotherapy addresses only half the problem. Improved pharmacokinetics will not help pharmacoresistance because of loss of receptors. Waiting for one drug to fail before giving the second drugs gives pharmacoresistance time to develop. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Assuntos
Anticonvulsivantes/administração & dosagem , Benzodiazepinas/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Animais , Esquema de Medicação , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/fisiopatologia , Quimioterapia Combinada , Humanos , Midazolam/administração & dosagem , Pilocarpina/toxicidade , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Ácido Valproico/administração & dosagem
4.
Epilepsia Open ; 3(Suppl Suppl 2): 169-179, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30564776

RESUMO

Treatment of status epilepticus (SE) in infants and children is challenging. There is a recognition that a broad set of developmental processes need to be considered to fully appreciate the physiologic complexity of severe seizures, and seizure outcomes, in infants and children. The development and use of basic models to elucidate important mechanisms will help further our understanding of these processes. Here we review some of the key experimental models and consider several areas relevant to treatment that could lead to productive translational research. Terminating seizures quickly is essential. Understanding pharmacoresistance of SE as it relates to receptor trafficking will be critical to seizure termination. Once a severe seizure is terminated, how will the developing brain respond? Basic studies suggest that there are important acute and long-term histopathologic, and pathophysiologic, consequences that, if left unaddressed, will produce long-lasting deficits on the form and function of the central nervous system. To fully utilize the evidence that basic models produce, age- and development- and model-specific frameworks have to be considered carefully. Studies have demonstrated that severe seizures can cause perturbations to developmental processes during critical periods of development that lead to life-long deficits. Unfortunately, some of the drugs that are commonly used to treat seizures may also produce negative outcomes by enhancing Cl--mediated depolarization, or by accelerating programmed cell death. More research is needed to understand these phenomena and their relevance to the human condition, and to develop rational drugs that protect the developing brain from severe seizures to the fullest extent possible.

5.
Epilepsia ; 58(7): 1199-1207, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28597912

RESUMO

OBJECTIVE: To evaluate acute and long-term effects of intravenous brivaracetam (BRV) and BRV + diazepam (DZP) combination treatment in a rat model of self-sustaining status epilepticus (SSSE). METHODS: Rats were treated with BRV (10 mg/kg) 10 min after initiation of perforant path stimulation (PPS) as early treatment; or BRV (10-300 mg/kg), DZP (1 mg/kg), or BRV (0.3-10 mg/kg) + DZP (1 mg/kg) 10 min after the end of PPS (established SSSE). Seizure activity was recorded electrographically for 24 h posttreatment (acute effects), and for 1 week at 6-8 weeks or 12 months' posttreatment (long-term effects). All treatments were compared with control rats using one-way analysis of variance (ANOVA) and Bonferroni's test, or Kruskal--Wallis and Dunn's multiple comparison tests, when appropriate. RESULTS: Treatment of established SSSE with BRV (10-300 mg/kg) resulted in dose-dependent reduction in SSSE duration and cumulative seizure time, achieving statistical significance at doses ≥100 mg/kg. Lower doses of BRV (0.3-10 mg/kg) + low-dose DZP (1 mg/kg) significantly reduced SSSE duration and number of seizures. All control rats developed spontaneous recurrent seizures (SRS) 6-8 weeks after SSSE, whereas seizure freedom was noted in 2/10, 5/10, and 6/10 rats treated with BRV 200 mg/kg, 300 mg/kg, and BRV 10 mg/kg + DZP, respectively. BRV (10-300 mg/kg) showed a dose-dependent trend toward reduction of SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at 300 mg/kg. Combination of BRV (10 mg/kg) + DZP significantly reduced SRS frequency, cumulative seizure time, and spike frequency. In the 12-month follow-up study, BRV (0.3-10 mg/kg) + low-dose DZP markedly reduced SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at some doses. Early treatment of SSSE with BRV 10 mg/kg significantly reduced long-term SRS frequency. SIGNIFICANCE: These findings support clinical evaluation of BRV for treatment of status epilepticus or acute repetitive seizures.


Assuntos
Anticonvulsivantes/farmacologia , Diazepam/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Pirrolidinonas/farmacologia , Processamento de Sinais Assistido por Computador , Estado Epiléptico/tratamento farmacológico , Animais , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiopatologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Infusões Intravenosas , Assistência de Longa Duração , Masculino , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiopatologia , Ratos , Ratos Wistar , Estado Epiléptico/fisiopatologia
6.
Neurobiol Dis ; 104: 41-49, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461248

RESUMO

Early maladaptive internalization of synaptic GABAA receptors (GABAAR) and externalization of NMDA receptors (NMDAR) may explain the time-dependent loss of potency of standard anti-epileptic drugs (AED) in refractory status epilepticus (SE). We hypothesized that correcting the effects of changes in GABAAR and NMDAR would terminate SE, even when treatment is delayed 40 minutes. SE was induced in adult Sprague-Dawley rats with a high dose of lithium and pilocarpine. The GABAAR agonist midazolam, the NMDAR antagonist ketamine and the AED valproate were injected 40 min after SE onset in combination or as monotherapy. The midazolam-ketamine-valproate combination was more efficient than triple-dose midazolam, ketamine or valproate monotherapy or higher-dose dual therapy in reducing several parameters of SE severity. Triple therapy also reduced SE-induced acute neuronal injury and spatial memory deficits. In addition, simultaneous triple therapy was more efficient than sequential triple therapy: giving the three drugs simultaneously was more efficient at stopping seizures than the standard practice of giving them sequentially. Furthermore, midazolam-ketamine-valproate therapy suppressed seizures far better than the midazolam-fosphenytoin-valproate therapy, which follows evidence-based AES guidelines. These results show that a treatment aimed at correcting maladaptive GABAAR and NMDAR trafficking can reduce the severity of SE and its long-term consequences.


Assuntos
Anticonvulsivantes/uso terapêutico , Estado Epiléptico/terapia , Animais , Ondas Encefálicas/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada/métodos , Eletroencefalografia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Midazolam/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenitoína/análogos & derivados , Fenitoína/uso terapêutico , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Ácido Valproico/uso terapêutico
7.
Ann Neurol ; 82(1): 115-120, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556259

RESUMO

Status epilepticus is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. γ-Aminobutyric acidergic (GABAergic) drugs, the standard treatment for neonatal seizures, can have excitatory effects in the neonatal brain, which may worsen the seizures and their effects. Using a recently developed model of status epilepticus in postnatal day 7 rat pups that results in widespread neuronal injury, we found that the GABAA agonists phenobarbital and midazolam significantly increased status epilepticus-associated neuronal injury in various brain regions. Our results suggest that more research is needed into the possible deleterious effects of GABAergic drugs on neonatal seizures and on excitotoxic neuronal injury in the immature brain. Ann Neurol 2017;82:115-120.


Assuntos
Midazolam/efeitos adversos , Neurônios/patologia , Fenobarbital/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Contagem de Células , Feminino , Masculino , Ratos , Estado Epiléptico/patologia
8.
Epilepsia ; 58(4): e49-e53, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28225161

RESUMO

During status epilepticus (SE), synaptic γ-aminobutyric acid A receptors (GABAA Rs) become internalized and inactive, whereas spare N-methyl-d-aspartate receptors (NMDARs) assemble, move to the membrane, and become synaptically active. When treatment of SE is delayed, the number of synaptic GABAA Rs is drastically reduced, and a GABAA agonist cannot fully restore inhibition. We used a combination of low-dose diazepam (to stimulate the remaining GABAA Rs), ketamine (to mitigate the effect of the NMDAR increase), and valproate (to enhance inhibition at a nonbenzodiazepine site) to treat seizures in a model of severe cholinergic SE. High doses of diazepam failed to stop electrographic SE, showing that benzodiazepine pharmacoresistance had developed. The diazepam-ketamine-valproate combination was far more effective in stopping SE than triple-dose monotherapy using the same individual drugs. Isobolograms showed that this drug combination's therapeutic actions were synergistic, with positive cooperativity between drugs, whereas drug toxicity was simply additive, without positive or negative cooperativity. As a result, the therapeutic index was improved by this drug combination compared to monotherapy. These results suggest that synergistic drug combinations that target receptor changes can control benzodiazepine-refractory SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Eletrodos Implantados , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Agonistas GABAérgicos/uso terapêutico , Masculino , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
9.
Epilepsia ; 57(9): 1406-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27500978

RESUMO

OBJECTIVE: Pharmacoresistance remains an unsolved therapeutic challenge in status epilepticus (SE) and in cholinergic SE induced by nerve agent intoxication. SE triggers a rapid internalization of synaptic γ-aminobutyric acid A (GABAA ) receptors and externalization of N-methyl-d-aspartate (NMDA) receptors that may explain the loss of potency of standard antiepileptic drugs (AEDs). We hypothesized that a drug combination aimed at correcting the consequences of receptor trafficking would reduce SE severity and its long-term consequences. METHODS: A severe model of SE was induced in adult Sprague-Dawley rats with a high dose of lithium and pilocarpine. The GABAA receptor agonist midazolam, the NMDA receptor antagonist ketamine, and/or the AED valproate were injected 40 min after SE onset in combination or as monotherapy. Measures of SE severity were the primary outcome. Secondary outcomes were acute neuronal injury, spontaneous recurrent seizures (SRS), and Morris water maze (MWM) deficits. RESULTS: Midazolam-ketamine dual therapy was more efficient than double-dose midazolam or ketamine monotherapy or than valproate-midazolam or valproate-ketamine dual therapy in reducing several parameters of SE severity, suggesting a synergistic mechanism. In addition, midazolam-ketamine dual therapy reduced SE-induced acute neuronal injury, epileptogenesis, and MWM deficits. SIGNIFICANCE: This study showed that a treatment aimed at correcting maladaptive GABAA receptor and NMDA receptor trafficking can stop SE and reduce its long-term consequences. Early midazolam-ketamine dual therapy may be superior to monotherapy in the treatment of benzodiazepine-refractory SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Colinérgicos/toxicidade , Ketamina/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Midazolam/uso terapêutico , Estado Epiléptico , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Deficiências da Aprendizagem/etiologia , Cloreto de Lítio/toxicidade , Masculino , N-Metilescopolamina/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Ácido Valproico/uso terapêutico
10.
Ann N Y Acad Sci ; 1378(1): 166-173, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392038

RESUMO

Cholinergic status epilepticus (CSE) quickly becomes self-sustaining, independent of its initial trigger, and resistant to benzodiazepines and other antiepileptic drugs. We review a few of the many physiological changes associated with CSE, with an emphasis on receptor trafficking. Time-dependent internalization of synaptic γ-aminobutyric acid (GABA)A receptors explains, in part, the loss of inhibition and the loss of response to benzodiazepines in the early stages of CSE. The increase in N-methyl-d-aspartate receptors may contribute to the runaway excitation and excitotoxicity of CSE. These changes have therapeutic implications. The time-dependent increase in maladaptive changes points to the importance of early treatment. The involvement of both inhibitory and excitatory systems challenges current therapeutic guidelines, which recommend treating only one system, and questions the rationale for monotherapy. It suggests that polytherapy may be needed, especially when treatment is delayed, so that drugs can only reach a much reduced number of GABAA receptors. Finally, it raises the possibility that the current practice of waiting for one treatment to fail before starting the next drug may need to be reevaluated.


Assuntos
Anticonvulsivantes/uso terapêutico , Benzodiazepinas/uso terapêutico , Antagonistas de Receptores de GABA-A/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/fisiopatologia , Animais , Humanos , Receptores de GABA-A/metabolismo , Estado Epiléptico/metabolismo , Resultado do Tratamento
11.
Epilepsy Res ; 120: 47-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709882

RESUMO

OBJECTIVE: Status Epilepticus (SE) is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. However, the role of SE in this injury is uncertain. Until now, we have lacked an animal model in which seizures result in neuronal injury in rodent models at ages below postnatal day 12 (P12) unless seizures are combined with inflammatory stressors. METHODS: We induced SE with high-dose lithium and pilocarpine in P7 rats, which are developmentally close to human neonates. Several EEG measures and O2 saturation were recorded during the 6h following initiation of SE. We assessed neuronal injury at 6 and 24h post-SE onset using Fluoro-Jade B staining (FJB) and caspase-3a immunoreactivity (IR). RESULTS: EEGs showed continuous polyspikes activity for 54.3 ± 6.7 min, while O2 saturation showed no significant hypoxemia. By 24h after SE onset, significant neuronal injury was observed in CA1/subiculum, CA3, dentate gyrus, thalamus, neocortex, amygdala, piriform cortex, lateral entorhinal cortex, hypothalamus, caudate putamen, globus pallidus, ventral pallidum, and nucleus accumbens. At 24h post-SE, caspase-3a IR was significantly increased in CA1/subiculum, thalamus, and neocortex compared to sham, and caspase-3a IR neurons had fragmented nuclei, suggesting that SE triggered an irreversible form of cell injury. SIGNIFICANCE: In conclusion, we have developed a model of cholinergic SE in P7 rat pups, which combines high survival (69.9% survival at 24h) and widespread brain injury. These studies suggest that the immature brain is vulnerable to severe forms of SE.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Modelos Animais de Doenças , Eletrocorticografia , Eletroencefalografia , Feminino , Imuno-Histoquímica , Compostos de Lítio , Masculino , Oxigênio/metabolismo , Pilocarpina , Ratos Sprague-Dawley
12.
Epilepsia ; 52 Suppl 8: 70-1, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21967369

RESUMO

We used a model of severe cholinergic status epilepticus (SE) to study polytherapy aimed at reversing the effects of seizure-induced loss of synaptic GABA(A) receptors and seizure-induced gain of synaptic NMDA receptors. Combinations of a benzodiazepine with ketamine and valproate, or with ketamine and brivaracetam, were more effective and less toxic than benzodiazepine monotherapy in this model of SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Quimioterapia Combinada/métodos , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos
13.
Neurochem Res ; 35(12): 2193-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21136154

RESUMO

During flurothyl seizures in 4-day-old rats, cortical concentration of ATP, phosphocreatine and glucose fell while lactate rose. Cortical energy use rate more than doubled, while glycolytic rate increased fivefold. Calculation of the cerebral metabolic balance during sustained seizures suggests that energy balance could be maintained in hyperglycemic animals, and would decline slowly in normoglycemia, but would be compromised by concurrent hypoglycemia, hyperthermia or hypoxia. These results suggest that the metabolic challenge imposed on the brain by this model of experimental neonatal seizures is milder than that seen at older ages, but can become critical when associated with other types of metabolic stress.


Assuntos
Animais Recém-Nascidos , Encéfalo/metabolismo , Metabolismo Energético , Animais , Feminino , Gravidez , Ratos , Ratos Wistar
14.
Brain Res ; 1181: 104-17, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17919468

RESUMO

Neurochemical studies document involvement of benzodiazepine (BDZ) and mu opioid receptors in seizure development and their possible age-related role during epileptogenesis. To study developmental changes of this role LiCl/pilocarpine status epilepticus (SE) was induced in P12, P25 and/or adult rats. This SE leads to epilepsy in all adult and subpopulation of immature rats. Using in vitro autoradiography, benzodiazepine (BDZ) and mu opioid receptor binding was evaluated 1 week (early phase of epileptogenesis) and 3 months (chronic phase) after SE in 27 brain structures involved in seizure generation and spread (amygdala, hippocampus, basal ganglia and thalamic nuclei). The pattern of receptor binding changes was related to the age at SE, interval after SE and to brain structures. Enhanced BDZ binding was found 1 week after SE in many cortical areas in P12 and also in the amygdala complex and dentate gyrus in both P12 and P25. No changes of BDZ binding occurred in adults at that time, but 3 months after SE a decrease of binding appeared in all evaluated areas in both adult and P25 but not P12 rats. This decrease did not reflect neuronal loss. mu opioid receptors were less significantly affected but clear tendency to decrease binding occurred in adult rats in various cortical, amygdala and thalamic regions early after SE. Changes were less expressed in immature rats. Our data support the hypothesis that age-related changes of receptor properties may participate in different functional consequences of SE including epileptogenesis (more common in older age groups) and behavioral changes.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Receptores de GABA-A/metabolismo , Receptores Opioides mu/metabolismo , Estado Epiléptico/metabolismo , Fatores Etários , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Cloreto de Lítio , Pilocarpina , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Estado Epiléptico/induzido quimicamente , Fatores de Tempo
15.
Pediatr Res ; 59(2): 237-43, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439585

RESUMO

We studied the effects of treating status epilepticus (SE) induced by lithium and pilocarpine at postnatal day 15 (P15) or 28 (P28), on the severity of acute SE and of SE-induced epileptogenesis. Rats received topiramate (10 or 50 mg/kg, IP) or diazepam (5 mg/kg, IP) 20, 40 or 70 min after pilocarpine, and three months after SE 24-h video/EEG recordings were obtained for one (P28) or two weeks (P15) continuously. In P15 rats, topiramate did not modify the course of SE, yet treatment at 20 or 40 min completely prevented the development of spontaneous recurrent seizures (SRS) while later treatment (70 min) was partially effective in reducing the severity and frequency of SRS. Diazepam was effective against acute SE at all time points tested. Early (20 min) but not late treatment with diazepam had the effect of reducing the frequency and severity of SRS. In P28 rats, both drugs reduced the cumulative seizure time. Early treatment (20 min) with either drug reduced the incidence of chronic epilepsy. Late treatment (40/70 min) did not alter the incidence of SRS, but decreased their frequency. This study demonstrates that, in the treatment of SE, anticonvulsant and antiepileptogenic effects can be dissociated in a development-specific manner: topiramate was antiepileptogenic without being an effective anticonvulsant in P15 animals at the doses tested. Diazepam, on the other hand, was a better anticonvulsant than an antiepileptogenic agent in the P15 animals at the dose tested. Such effects were not seen in the older animals.


Assuntos
Anticonvulsivantes/uso terapêutico , Diazepam/uso terapêutico , Frutose/análogos & derivados , Pilocarpina/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/administração & dosagem , Atropina/efeitos adversos , Atropina/uso terapêutico , Diazepam/administração & dosagem , Relação Dose-Resposta a Droga , Eletroencefalografia , Frutose/administração & dosagem , Frutose/uso terapêutico , Pilocarpina/administração & dosagem , Ratos , Ratos Wistar , Estado Epiléptico/fisiopatologia , Topiramato
16.
Epilepsia ; 46 Suppl 5: 89-93, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15987259

RESUMO

PURPOSE: The piriform cortex is involved in genesis and propagation of temporal lobe seizures. Degenerating neurons demonstrated by FluoroJade B staining are visible early after status epilepticus (SE) as well as after longer intervals. Furthermore, the piriform cortex is activated during an early phase of experimental temporal seizures, as described by magnetic resonance imaging (MRI) studies. It indicates that the early activity of the piriform cortex should be accompanied by increased adenosine triphosphate (ATP) production. Cytochrome oxidase activity in the brain may be used as an endogenous metabolic marker for neurons. The present research studied activity of the cytochrome oxidase separately in the rostral and caudal parts of the piriform cortex after lithium chloride-pilocarpine-induced SE in adult rats. METHODS: SE was induced by a single dose of pilocarpine (40 mg/kg) in LiCl-pretreated adult Wistar rats. Cytochrome oxidase activity was mapped by optical density on sections stained with histochemistry separately in the rostral and caudal parts of the piriform cortex. RESULTS: Optical density of the rostral part of the piriform cortex remained nearly unchanged at both 1 week (0.284 +/- 0.009 in SE group vs. 0.297 +/- 0.005 in controls) and 3 months (0.318 +/- 0.007 in SE group vs. 0.333 +/- 0.004 in controls) after SE intervals. The caudal part of the piriform cortex showed a decrease of optical density in both groups at 1 week (0.265 +/- 0.007 in SE group vs. 0.285 +/- 0.009 in controls) and 3 months after SE (0.292 +/- 0.006 in SE animals vs. 0.310 +/- 0.003 in controls), respectively. Nissl-stained sections demonstrated a marked neuronal loss and gliosis and/or necrotic cavities through the caudal piriform cortex 1 week after SE. CONCLUSIONS: Our results demonstrated that damage of the piriform cortex is not homogeneous and thus that its parts are differently involved in epileptic activity.


Assuntos
Córtex Cerebral/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estado Epiléptico/enzimologia , Animais , Mapeamento Encefálico , Córtex Cerebral/patologia , Cloreto de Lítio , Masculino , Neurônios/enzimologia , Neurônios/patologia , Pilocarpina , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
17.
Eur J Neurosci ; 19(12): 3255-65, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15217382

RESUMO

It remains under dispute whether status epilepticus (SE) in the perinatal period or early childhood or the underlying neuropathology is the cause of functional impairment later in life. The present study examined whether SE induced by LiCl-pilocarpine in normal immature brain (at the age of 12 or 25 days; P12 or P25) causes cognitive decline and epileptogenesis, and the data were compared to those of rats undergoing SE as adults. Rats in the P12 group had impaired memory (repeated exposure to open-field paradigm) and emotional behaviour (lower proportion of open-arm entries and higher incidence of risk assessment period in elevated plus-maze) when assessed 3 months after SE, although not as severe as in the older age groups. Importantly, video-electroencephalography monitoring 3 months after SE demonstrated that 25% of rats in the P12 and 50% in P25 group developed spontaneous seizures. Only nonconvulsive seizures (ictal activity in hippocampus accompanied by automatisms) were recorded in the P12 group whereas rats in the P25 group exhibited clonic convulsions. The present findings indicate that SE is harmful to the immature brain as early as P12, which might be compared with early infancy in humans.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Atividade Motora/fisiologia , Estado Epiléptico/complicações , Fatores Etários , Animais , Peso Corporal/fisiologia , Transtornos Cognitivos/etiologia , Eletroencefalografia , Masculino , Aprendizagem em Labirinto/fisiologia , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
18.
Epilepsy Behav ; 5(2): 180-91, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15123019

RESUMO

The aims of the present study were to ascertain whether nonconvulsive status epilepticus (NCSE) could give rise to long-term behavioral deficits and permanent brain damage. Two months after NCSE was elicited with pilocarpine (15 mg/kg i.p.) in LiCl-pretreated adult male rats, animals were assigned to either behavioral (spontaneous behavior, social interaction, elevated plus-maze, rotorod, and bar-holding tests) or EEG studies. Another group of animals was sacrificed and their brains were processed for Nissl and Timm staining as well as for parvalbumin and calbindin immunohistochemistry. Behavioral analysis revealed motor deficits (shorter latencies to fall from rotorod as well as from bar) and disturbances in the social behavior of experimental animals (decreased interest in juvenile conspecific). EEGs showed no apparent abnormalities. Quantification of immunohistochemically stained sections revealed decreased amounts of parvalbumin- and calbindin-immunoreactive neurons in the motor cortex and of parvalbumin-positive neurons in the dentate gyrus. Despite relatively inconspicuous manifestations, NCSE may represent a risk for long-term deficits.


Assuntos
Comportamento Animal/fisiologia , Dano Encefálico Crônico/fisiopatologia , Eletroencefalografia , Estado Epiléptico/fisiopatologia , Animais , Nível de Alerta/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Dano Encefálico Crônico/induzido quimicamente , Dano Encefálico Crônico/patologia , Mapeamento Encefálico , Calbindinas , Convulsivantes , Sistema Límbico/patologia , Sistema Límbico/fisiopatologia , Cloreto de Lítio , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Neocórtex/patologia , Neocórtex/fisiopatologia , Parvalbuminas/análise , Pilocarpina , Equilíbrio Postural/fisiologia , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Proteína G de Ligação ao Cálcio S100/análise , Comportamento Social , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Gravação em Vídeo
19.
Epilepsia ; 45(1): 4-12, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14692901

RESUMO

PURPOSE: Cell transplantation into the brain is an aggressive clinical alternative. The hopes of treating diseases like intractable temporal lobe epilepsy have been subdued because the preclinical successes thus far have shown only slowing of epileptogenesis, or suppression of electrically induced seizures. Because the hallmark of epilepsy is spontaneous seizures, the clinical relevance of these studies has been questioned. The purpose of this study was to establish that cells genetically engineered to produce gamma-aminobutyric acid (GABA) could suppress spontaneous seizures in an accepted model of temporal lobe epilepsy. METHODS: Conditionally immortalized neurons were engineered to produce GABA under the control of tetracycline. These cells were transplanted into the substantia nigra of spontaneously seizing animals. After transplantation, the animals were monitored for 3 days immediately after surgery and again for 3 days beginning 7-8 days after surgery. Seizures and epileptiform spikes were recorded and later analyzed with detection software combined with video monitoring. RESULTS: Animals that received genetically engineered GABA-producing cells had significantly fewer spontaneous seizures than did animals that received control cells, or animals that received GABA-producing cells plus doxycycline at the observation period starting 1 week after transplantation. A significant suppression of epileptiform spikes also was noted between the group that received GABA-producing cells and the group that received the same cells but were given doxycycline. The engineered cells show evidence of integration with the host but limited survival. CONCLUSIONS: These data demonstrate that genetically engineered cells have the ability to suppress spontaneous seizures when transplanted into seizure-modulating nuclei. This is an important step toward defining a clinical potential for this approach in epilepsy. The fact that the gene of interest can be regulated suggests that individualizing transplant therapy may be possible.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/transplante , Engenharia Genética/métodos , Convulsões/prevenção & controle , Convulsões/cirurgia , Ácido gama-Aminobutírico/genética , Animais , Técnicas de Cultura de Células/métodos , Transplante de Células/métodos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Ratos , Ratos Wistar , Convulsões/metabolismo , Ácido gama-Aminobutírico/biossíntese
20.
Prog Brain Res ; 135: 335-53, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12143353

RESUMO

The response of the developing brain to epileptic seizures and to status epilepticus is highly age-specific. Neonates with their low cerebral metabolic rate and fragmentary neuronal networks can tolerate relatively prolonged seizures without suffering massive cell death, but severe seizures in experimental animals inhibit brain growth, modify neuronal circuits, and can lead to behavioral deficits and to increases in neuronal excitability. Past infancy, the developing brain is characterized by high metabolic rate, exuberant neuronal and synaptic networks and overexpression of receptors and enzymes involved in excitotxic mechanisms. The outcome of seizures is highly model-dependent. Status epilepticus may produce massive neuronal death, behavioral deficits, synaptic reorganization and chronic epilepsy in some models, little damage in others. Long-term consequences are also highly age- and model-dependent. However, we now have some models which reliably lead to spontaneous seizures and chronic epilepsy in the vast majority of animals, demonstrating that seizure-induced epileptogenesis can occur in the developing brain. The mode cell death from status epilepticus is largely (but not exclusively) necrotic in adults, while the incidence of apoptosis increases at younger ages. Seizure-induced necrosis has many of the biochemical features of apoptosis, with early cytochrome release from mitochondria and capase activation. We speculate that this form of necrosis is associated with seizure-induced energy failure.


Assuntos
Encéfalo/patologia , Neurônios/patologia , Convulsões/patologia , Estado Epiléptico/patologia , Envelhecimento , Animais , Encéfalo/crescimento & desenvolvimento , Morte Celular , Modelos Animais de Doenças , Humanos , Recém-Nascido , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...