Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D660-D677, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417935

RESUMO

The identification of unknown chemicals has emerged as a significant issue in untargeted metabolome analysis owing to the limited availability of purified standards for identification; this is a major bottleneck for the accumulation of reusable metabolome data in systems biology. Public resources for discovering and prioritizing the unknowns that should be subject to practical identification, as well as further detailed study of spending costs and the risks of misprediction, are lacking. As such a resource, we released databases, Food-, Plant- and Thing-Metabolome Repository (http://metabolites.in/foods, http://metabolites.in/plants, and http://metabolites.in/things, referred to as XMRs) in which the sample-specific localization of unknowns detected by liquid chromatography-mass spectrometry in a wide variety of samples can be examined, helping to discover and prioritize the unknowns. A set of application programming interfaces for the XMRs facilitates the use of metabolome data for large-scale analysis and data mining. Several applications of XMRs, including integrated metabolome and genome analyses, are presented. Expanding the concept of XMRs will accelerate the identification of unknowns and increase the discovery of new knowledge.


Assuntos
Bases de Dados Factuais , Metaboloma , Metabolômica , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
2.
Plant Cell Physiol ; 62(3): 411-423, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33416873

RESUMO

Lotus japonicus is a model legume that accumulates 8-hydroxyflavonol derivatives, such as gossypetin (8-hydroxyquercetin) 3-O-glycoside, which confer the yellow color to its petals. An enzyme, flavonoid 8-hydroxylase (F8H; LjF8H), is assumed to be involved in the biosynthesis, but the specific gene is yet to be identified. The LjF8H cDNA was isolated as a flavin adenine dinucleotide (FAD)-binding monooxygenase-like protein using flower buds and flower-specific EST data of L. japonicus. LjF8H is a single copy gene on chromosome III consisting of six exons. The conserved FAD- and NAD(P)H-dependent oxidase motifs were found in LjF8H. Phylogenetic analysis suggested that LjF8H is a member of the flavin monooxygenase group but distinctly different from other known flavonoid oxygenases. Analysis of recombinant yeast microsome expressing LjF8H revealed that the enzyme catalyzed the 8-hydroxylation of quercetin. Other flavonoids, such as naringenin, eriodictyol, apigenin, luteolin, taxifolin and kaempferol, also acted as substrates of LjF8H. This broad substrate acceptance was unlike known F8Hs in other plants. Interestingly, flavanone and flavanonol, which have saturated C-C bond at positions 2 and 3 of the flavonoid C-ring, produced 6-hyroxylflavonoids as a by-product of the enzymatic reaction. Furthermore, LjF8H only accepted the 2S-isomer of naringenin, suggesting that the conformational state of the substrates might affect product specificity. The overexpression of LjF8H in Arabidopsis thaliana and Petunia hybrida synthesized gossypetin and 8-hydroxykaempferol, respectively, indicating that LjF8H was functional in plant cells. In conclusion, this study represents the first instance of cloning and identification of F8Hs responsible for gossypetin biosynthesis.


Assuntos
Flavonoides/metabolismo , Lotus/enzimologia , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Lotus/genética , Lotus/metabolismo , Oxigenases de Função Mista/genética , Organismos Geneticamente Modificados , Filogenia , Proteínas de Plantas/genética , Saccharomyces cerevisiae
3.
Plant Biotechnol (Tokyo) ; 37(3): 383-387, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088206

RESUMO

Metabolome analysis of flavored vegetables, green spring onion (Allium fistulosum), Chinese chive (A. tuberosum), and their interspecies hybrid Negi-Nira chive, was conducted using liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry, with ca. 2 ppm mass accuracy. Ion peaks in the chromatograms of four biological replicates of the vegetable leaves were processed using the alignment software PowerGet for metabolite comparison, from which we obtained the potential chemical formulae. In total, 860 ion peaks were reproducibly detected; of these, 506, 525, and 336 peaks were found in the hybrid, A. tuberosum, and A. fistulosum, respectively. There were 130 peaks specific to the hybrid; from these, 31 metabolites were annotated by searching compound databases. The sulfur-containing compounds and flavonoids were further analyzed using bioinformatics, to examine the sulfur metabolism of Allium volatiles and the flavonoid pathways in these species. In conclusion, our metabolome analysis of this interspecies hybrid and its parents provides a unique opportunity to elucidate their metabolic background.

4.
iScience ; 23(7): 101332, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32668199

RESUMO

Somatic plant cells can regenerate shoots and/or roots or adventitious embryonic calluses, which may induce organ formation under certain conditions. Such regenerations occur via dedifferentiation of somatic cells, induction of organs, and their subsequent outgrowth. Despite recent advances in understanding of plant regeneration, many details of shoot induction remain unclear. Here, we artificially induced shoot stem-like green organs (SSOs) in Arabidopsis thaliana roots via simultaneous induction of two transcription factors (TFs), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 25 (ATHB25, At5g65410) and the B3 family transcription factor REPRODUCTIVE MERISTEM 7 (REM7, At3g18960). The SSOs exhibited negative gravitropism and differentiated vascular bundle phenotypes. The ATHB25/REM7 induced the expression of genes controlling shoot stem characteristics by ectopic expression in roots. Intriguingly, the restoration of root growth was seen in the consecutive and adjacent parts of the SSOs under gene induction conditions. Our findings thus provide insights into the development and regeneration of plant shoot stems.

5.
Plant J ; 100(3): 610-626, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350858

RESUMO

The elucidation of lipid metabolism in microalgae has attracted broad interest, as their storage lipid, triacylglycerol (TAG), can be readily converted into biofuel via transesterification. TAG accumulates in the form of oil droplets, especially when cells undergo nutrient deprivation, such as for nitrogen (N), phosphorus (P), or sulfur (S). TAG biosynthesis under N-deprivation has been comprehensively studied in the model microalga Chlamydomonas reinhardtii, during which TAG accumulates dramatically. However, the resulting rapid breakdown of chlorophyll restricts overall oil yield productivity and causes cessation of cell growth. In contrast, P-deprivation results in oil accumulation without disrupting chloroplast integrity. We used a reverse genetics approach based on co-expression analysis to identify a transcription factor (TF) that is upregulated under P-depleted conditions. Transcriptomic analysis revealed that the mutants showed repression of genes typically associated with lipid remodeling under P-depleted conditions, such as sulfoquinovosyl diacylglycerol 2 (SQD2), diacylglycerol acyltransferase (DGTT1), and major lipid droplet protein (MLDP). As accumulation of sulfoquinovosyl diacylglycerol and TAG were suppressed in P-depleted mutants, we designated the protein as lipid remodeling regulator 1 (LRL1). LRL1 mutants showed slower growth under P-depletion. Moreover, cell size in the mutant was significantly reduced, and TAG and starch accumulation per cell were decreased. Transcriptomic analysis also suggested the repression of several genes typically upregulated in adaptation to P-depletion that are associated with the cell cycle and P and lipid metabolism. Thus, our analysis of LRL1 provides insights into P-allocation and lipid remodeling under P-depleted conditions in C. reinhardtii. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The sequencing data were made publicly available under the BioProject Accession number PRJDB6733 and an accession number LC488724 at the DNA Data Bank of Japan (DDBJ). The data is available at https://trace.ddbj.nig.ac.jp/BPSearch/bioproject?acc=PRJDB6733; http://getentry.ddbj.nig.ac.jp/getentry/na/LC488724. The metabolome data were made publicly available and can be accessed at http://metabolonote.kazusa.or.jp/SE195:/; http://webs2.kazusa.or.jp/data/nur/.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos/genética , Metaboloma , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Triglicerídeos/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Ligação a DNA/genética , Diacilglicerol O-Aciltransferase/genética , Perfilação da Expressão Gênica , Genes Reporter , Microalgas , Modelos Biológicos , Mutação , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Amido/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 7(1): 1243, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455528

RESUMO

Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.


Assuntos
Flavonoides/química , Flavonoides/isolamento & purificação , Espectrometria de Massas , Metabolômica/métodos , Bases de Dados Factuais , Petroselinum/química
7.
Plant Cell Physiol ; 57(1): e6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26746174

RESUMO

Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera.


Assuntos
Bases de Dados Genéticas , Haptófitas/genética , Transcriptoma , Etiquetas de Sequências Expressas , Ontologia Genética , Anotação de Sequência Molecular
8.
Plant J ; 83(6): 1114-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26227242

RESUMO

We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.


Assuntos
Arabidopsis/genética , Cromossomos Artificiais , Mapeamento Físico do Cromossomo/métodos , Cloroplastos/genética , Genoma Mitocondrial , Genoma de Planta , Biblioteca Genômica , Dados de Sequência Molecular , Software
9.
Plant Cell Physiol ; 55(2): 445-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319074

RESUMO

Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.


Assuntos
Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , DNA Intergênico , DNA de Plantas/química , DNA de Plantas/genética , Biblioteca Gênica , Genômica , Mutação INDEL , Anotação de Sequência Molecular , Mutação , Fenótipo , Análise de Sequência de DNA , Especificidade da Espécie
10.
Biosci Biotechnol Biochem ; 77(11): 2288-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24200804

RESUMO

A change in the free fatty acid (FFA) profile reflects an alteration in the lipid metabolism of peripheral tissue. A high-throughput quantitative analysis method for individual FFAs therefore needs to be established. We report here an optimized LC-MS assay for a high-throughput and high-sensitivity analysis of the 10 major long-chain FFAs in mouse plasma and liver. This assay enables quantification of individual FFAs by using trace amounts of samples (2 µL of plasma and 10 mg of liver tissue). We apply this method to analyze the FFA profile of plasma and liver samples from an obese mouse model treated with bezafibrate, the peroxisome proliferator-activated receptor α (PPARα) agonist, and show a change in the FFA profile, particularly in the palmitoleic and oleic acid contents. This assay is useful for quantifying individual FFAs and helpful for monitoring the condition of lipid metabolism.


Assuntos
Bezafibrato/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Hipolipemiantes/farmacologia , Obesidade/tratamento farmacológico , PPAR alfa/agonistas , Animais , Cromatografia Líquida , Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
11.
BMC Genomics ; 11: 210, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20350329

RESUMO

BACKGROUND: The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. RESULTS: To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. CONCLUSION: The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.


Assuntos
DNA Complementar/análise , DNA de Plantas/análise , Solanum lycopersicum/genética , Biblioteca Gênica , Genômica
12.
DNA Res ; 17(2): 105-16, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130013

RESUMO

Gene-to-gene coexpression analysis is a powerful approach to infer the function of uncharacterized genes. Here, we report comprehensive identification of coexpression gene modules of tomato (Solanum lycopersicum) and experimental verification of coordinated expression of module member genes. On the basis of the gene-to-gene correlation coefficient calculated from 67 microarray hybridization data points, we performed a network-based analysis. This facilitated the identification of 199 coexpression modules. A gene ontology annotation search revealed that 75 out of the 199 modules are enriched with genes associated with common functional categories. To verify the coexpression relationships between module member genes, we focused on one module enriched with genes associated with the flavonoid biosynthetic pathway. A non-enzyme, non-transcription factor gene encoding a zinc finger protein in this module was overexpressed in S. lycopersicum cultivar Micro-Tom, and expression levels of flavonoid pathway genes were investigated. Flavonoid pathway genes included in the module were up-regulated in the plant overexpressing the zinc finger gene. This result demonstrates that coexpression modules, at least the ones identified in this study, represent actual transcriptional coordination between genes, and can facilitate the inference of tomato gene function.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Genoma de Planta , Genômica , Proteínas de Plantas/genética
13.
Plant J ; 54(5): 949-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18266924

RESUMO

A large number of metabolites are found in each plant, most of which have not yet been identified. Development of a methodology is required to deal systematically with unknown metabolites, and to elucidate their biological roles in an integrated 'omics' framework. Here we report the development of a 'metabolite annotation' procedure. The metabolite annotation is a process by which structures and functions are inferred for metabolites. Tomato (Solanum lycopersicum cv. Micro-Tom) was used as a model for this study using LC-FTICR-MS. Collected mass spectral features, together with predicted molecular formulae and putative structures, were provided as metabolite annotations for 869 metabolites. Comparison with public databases suggests that 494 metabolites are novel. A grading system was introduced to describe the evidence supporting the annotations. Based on the comprehensive characterization of tomato fruit metabolites, we identified chemical building blocks that are frequently found in tomato fruit tissues, and predicted novel metabolic pathways for flavonoids and glycoalkaloids. These results demonstrate that metabolite annotation facilitates the systematic analysis of unknown metabolites and biological interpretation of their relationships, which provide a basis for integrating metabolite information into the system-level study of plant biology.


Assuntos
Bases de Dados Factuais , Espectrometria de Massas/métodos , Plantas/metabolismo , Cromatografia Líquida , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Mar Biotechnol (NY) ; 9(5): 550-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17659451

RESUMO

Pleurochrysis haptonemofera is a unicellular marine coccolithophorid that has calcified scales, coccoliths, on the cell surface. Some coccolithophorids including P. haptonemofera have a coccolith-bearing stage and a naked stage in their life cycles. To characterize genes involved in the coccolithogenesis, we generated a total of 9550 expressed sequence tags (EST) from a normalized cDNA library that was prepared using both coccolith-bearing cells (C-cells) and naked cells (N-cells), constructed a cDNA macroarray using the EST clones, and then analyzed the gene expression specificity in C-cells and N-cells. When cDNA clones whose expression ratio exceeded 3-fold were selected, as many as 180 clones were identified as C-cell-specific ones, while only 12 were found to be N-cell-specific ones. These clones were sequenced, assembled, and homology-searched against a public nonredundant protein database. As a result, they were grouped into 54 C-cell-specific and 6 N-cell-specific genes, and 59% and 50% of these genes exhibited significant similarity to those of other known proteins, respectively. To assess mRNA expression further, Northern hybridization was performed for 12 of the C-cell-specific genes and one of the N-cell-specific ones. These clones, together with the new cDNA macroarray, will provide a powerful tool for the future genome-wide functional analysis of uncharacterized genes related to the regulation of the calcification and life cycle of coccolithophorids.


Assuntos
Eucariotos/genética , Perfilação da Expressão Gênica/veterinária , Genes de Protozoários/genética , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting/veterinária , DNA de Protozoário/análise , DNA de Protozoário/biossíntese , DNA de Protozoário/química , Eucariotos/fisiologia , Genes de Protozoários/fisiologia , Dados de Sequência Molecular , Alinhamento de Sequência/veterinária
15.
Biochim Biophys Acta ; 1658(3): 235-43, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15450961

RESUMO

Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA- mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.


Assuntos
Cianobactérias/metabolismo , Fosfatidilgliceróis/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Western Blotting , Cloranfenicol/farmacologia , Eletroforese em Gel de Poliacrilamida , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...