Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nanomedicine (Lond) ; 17(15): 1039-1053, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36102916

RESUMO

Aim: Epigallocatechin gallate (EGCG) derived from green tea has poor stability; therefore, to enhance its bioavailability and anticancer efficiency, we synthesized three different nanoformulations. We hypothesized that these three nanoformulations of EGCG (nano-EGCG) would enhance EGCG's stability and improve its anticancer and antiangiogenic activity against melanoma compared with free EGCG. Methods: We prepared nano-EGCG using a copolymerization method with the UV blocker ZnO and the antioxidants lycopene and olive oil. Results: The different nano-EGCG formulation exhibited improved EGCG stability and greater suppression of melanoma growth than free EGCG. Nanoformulation preparation methods efficiently prevented the loss of EGCG activity and are a favorable approach for the treatment of melanoma. Conclusion: Nano-EGCG formulations had enhanced stability and produced greater suppression of melanoma tumor growth and angiogenesis compared with free EGCG.


Assuntos
Catequina , Melanoma , Óxido de Zinco , Humanos , Antioxidantes/farmacologia , Licopeno , Azeite de Oliva , Catequina/farmacologia , Catequina/uso terapêutico , Chá , Melanoma/tratamento farmacológico
5.
Biomedicines ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453545

RESUMO

Thyroid hormone L thyroxine stimulates pancreatic carcinoma cell proliferation via thyrointegrin αvß3 receptors, and antagonist tetraiodothyroacetic acid (tetrac) inhibits cancer cell growth. Chemically modified bis-triazole-tetrac conjugated with polyethylene glycol (P-bi-TAT) has higher binding affinity to αvß3 receptors compared to tetrac. We investigated the antiproliferation effect of P-bi-TAT in pancreatic cancer cells (SUIT2) and its radio- and chemo-sensitizing roles in a mouse model of pancreatic cancer. P-bi-TAT treatment increased tumor-targeted radiation-induced cell death and decreased tumor size. P-bi-TAT acted as a chemo-sensitizer and enhanced the 5-fluorouracil (5FU) effect in decreasing pancreatic tumor weight compared to 5FU monotherapy. Withdrawal of treatment continued the tumor regression; however, the 5FU group showed tumor regrowth. The mechanisms of the anti-cancer activity of P-bi-TAT on SUIT2 cells were assessed by microarray experiments, and genome-wide profiling identified significant alterations of 1348 genes' expression. Both down-regulated and up-regulated transcripts suggest that a molecular interference at the signaling pathway-associated gene expression is the prevalent mode of P-bi-TAT anti-cancer activity. Our data indicate that non-cytotoxic P-bi-TAT is not only an anti-cancer agent but also a radio-sensitizer and chemo-sensitizer that acts on the extracellular domain of the cell surface αvß3 receptor.

6.
Metabolites ; 12(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35448512

RESUMO

Chemically modified forms of tetraiodothyroacetic acid (tetrac), an L-thyroxine derivative, have been shown to exert their anticancer activity at plasma membrane integrin αvß3 of tumor cells. Via a specific hormone receptor on the integrin, tetrac-based therapeutic agents modulate expression of genes relevant to cancer cell proliferation, survival and energy metabolism. P-bi-TAT, a novel bivalent tetrac-containing synthetic compound has anticancer activity in vitro and in vivo against glioblastoma multiforme (GBM) and other types of human cancers. In the current study, microarray analysis was carried out on a primary culture of human GBM cells exposed to P-bi-TAT (10-6 tetrac equivalent) for 24 h. P-bi-TAT significantly affected expression of a large panel of genes implicated in cancer cell stemness, growth, survival and angiogenesis. Recent interest elsewhere in ATP synthase as a target in GBM cells caused us to focus attention on expression of genes involved in energy metabolism. Significantly downregulated transcripts included multiple energy-metabolism-related genes: electron transport chain genes ATP5A1 (ATP synthase 1), ATP51, ATP5G2, COX6B1 (cytochrome c oxidase subunit 6B1), NDUFA8 (NADH dehydrogenase (ubiquinone) FA8), NDUFV2I and other NDUF genes. The NDUF and ATP genes are also relevant to control of oxidative phosphorylation and transcription. Qualitatively similar actions of P-bi-TAT on expression of subsets of energy-metabolism-linked genes were also detected in established human GBM and pancreatic cancer cell lines. In conclusion, acting at αvß3 integrin, P-bi-TAT caused downregulation in human cancer cells of expression of a large number of genes involved in electron transport and oxidative phosphorylation. These observations suggest that cell surface thyroid hormone receptors on αvß3 regulate expression of genes relevant to tumor cell stemness and energy metabolism.

7.
Biomedicines ; 9(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829942

RESUMO

Ischemic heart disease is the main cause of death globally. Cardioprotection is the process whereby mechanisms that reduce myocardial damage, and activate protective factors, contribute to the preservation of the heart. Targeting these processes could be a new strategy in the treatment of post-ischemic heart failure (HF). Triiodothyronine (T3) and thyroxine (T4), which have multiple effects on the heart, prevent myocardial damage. This study describes the formulation, and characterization, of chemically modified polymeric nanoparticles incorporating T3, to target the thyroid hormone receptors. Modified T3 was conjugated to polylactide-co-glycolide (PLGA) to facilitate T3 delivery and restrict its nuclear translocation. Modified T3 and PLGA-T3 was characterized with 1H-NMR. The protective role of synthesized phosphocreatine (PCr) encapsulated PLGA-T3 nanoparticles (PLGA-T3/PCr NPs) and PLGA-T3 nanoparticles (PLGA-T3 NPs) in hypoxia-mediated cardiac cell insults was investigated. The results showed that PLGA-T3/PCr NPs represent a potentially new therapeutic agent for the control of tissue damage in cardiac ischemia and resuscitation.

8.
Molecules ; 26(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641577

RESUMO

Corchorus olitorius is a common, leafy vegetable locally known as "Saluyot" in the Philippines. Several studies have reported on its various pharmacological properties, such as antioxidant, anti-inflammatory, analgesic, and anticancer properties. However, little is known about its effects on angiogenesis. This study aimed to evaluate the anticancer properties, such as the antiproliferative, anti-angiogenic, and antitumor activities, of the C. olitorius aqueous extract (CO) and its bioactive compounds, chlorogenic acid (CGA) and isoquercetin (IQ), against human melanoma (A-375), gastric cancer (AGS), and pancreatic cancer (SUIT-2), using in vitro and in ovo biological assays. The detection and quantification of CGA and IQ in CO were achieved using LC-MS/MS analysis. The antiproliferative, anti-angiogenic, and antitumor activities of CO, CGA, and IQ against A-375, AGS, and SUIT-2 cancer cell lines were evaluated using MTT and CAM assays. CGA and IQ were confirmed to be present in CO. CO, CGA, and IQ significantly inhibited the proliferation of A-375, AGS, and SUIT-2 cancer cells in a dose-dependent manner after 48 h of treatment. Tumor angiogenesis (hemoglobin levels) of A-375 and AGS tumors was significantly inhibited by CO, CGA, IQ, and a CGA-IQ combination. The growth of implanted A-375 and AGS tumors was significantly reduced by CO, CGA, IQ, and a CGA-IQ combination, as measured in tumor weight. Our investigation provides new evidence to show that CO has promising anticancer effects on various types of human cancer cells. CO and its compounds are potential nutraceutical products that could be used for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Embrião de Galinha , Ácido Clorogênico/farmacologia , Cromatografia Líquida , Corchorus/química , Humanos , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/análogos & derivados , Quercetina/farmacologia , Espectrometria de Massas em Tandem
9.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439224

RESUMO

(1) Background: Acute myeloid leukemia (AML) accounts for up to one-third of more than 60,000 leukemia cases diagnosed annually in the U.S. Primary AML cells express membrane αvß3 integrin, which is associated with adverse prognosis and resistance to chemotherapies. A novel anticancer compound Polyethylene glycol-conjugated bi-TriAzole Tetraiodothyroacetic acid (P-bi-TAT) interacts with high affinity (Ki 0.3 nM) and specificity with the thyrointegrin αvß3. We evaluated P-bi-TAT activities in two different AML models representing monocytic and myelocytic forms of acute leukemia. (2) Methods and Results: The in vivo AML models were established prior to initiation of treatment protocols by grafting human leukemia cells in immunocompromised mice. IVIS imaging scans revealed that leukemic colonies were extensively established throughout the bone marrow, liver, and lung of the untreated animals. In animals treated with P-bi-TAT at daily doses ranging from 1-10 mg/kg, subcutaneously for 2-3 weeks, IVIS imaging scans revealed 95% reduction in bone marrow colonies and leukemic colonies in liver and lung. Also, the leukemic cells were not detected in bone marrow samples of P-bi-TAT-treated animals. The anti-neoplastic effect of P-bi-TAT administration on leukemic cells was associated with marked inhibition of NF-κB activity. We conclude that experimental P-bi-TAT therapy in vivo appears extraordinarily effective against the two forms of human AML models in mice. Because the P-bi-TAT molecular target, thyrointegrin αvß3, is consistently expressed in many, if not all, clinical AML samples, P-bi-TAT-based therapy seems to have significant clinical potential in treating most AML sub-types. Hence, P-bi-TAT represents a promising targeted therapeutic agent for AML patients.

10.
J Neurosci Methods ; 363: 109340, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461154

RESUMO

BACKGROUND: Neurogenic differentiation of human marrow stromal stem cells (hMSCs) into neural precursor cells (NPCs) offers new hope in many neurological diseases. Stromal cells can be differentiated into NPCs using small molecules acting as chemical inducers. The aim of this study is to formulate an efficient, direct, fast and safe protocol to differentiate hMSCs into NPCs using different inducers: b-mercaptoethanol (BME), triiodothyronine (T3), and curcumin (CUR). NEW METHOD: hMSCs were subjected to either 1 mM BME, 0.5 µM T3, or 5 µM CUR. Neurogenic differentiation was determined by assessing the protein expression of PAX6, SOX2, DLX2, and GAP-43 with flow cytometry and immunofluorescence, along with Nissl staining of differentiated cells. RESULTS AND COMPARISON WITH EXISTING METHOD: It was revealed that T3 and CUR are 70-80% better than BME in terms of efficiency and safety, and surprisingly BME was a good promoting factor for cell preconditioning with limited effects on neural trans-differentiation related to its toxic effects on cell viability. CONCLUSION: Reprogramming of bone marrow stromal cells into neural cells gives hope for treating different neurological disorders. Our study shows that T3 and CUR were effective in generation of NPCs from hMSCs with preservation of cell viability. BME was a good promoting factor for cell preconditioning with limited effects on neural transdifferentiation related to its toxic effects on cell viability.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Células da Medula Óssea , Diferenciação Celular , Humanos , Neurônios
11.
Radiat Res ; 196(4): 375-385, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260732

RESUMO

Tetraiodothyroacetic acid is a ligand of thyrointegrin αvß3, a protein that is highly expressed in various solid tumors and surrounding neovascular regions. Its nano derivative, Nano-diamino-tetrac (NDAT), has anticancer properties in preclinical models, enhances radiosensitivity, and inhibits cancer cell growth in vitro after X-ray irradiation. Using a novel experimental system developed to deliver accurate radiation dose to tumors under sterile conditions, this study establishes NDAT's radiosensitizing effect in SUIT-2 pancreatic cancer and H1299 non-small cell lung carcinoma xenografts in athymic mice for tumor-targeted radiation. In this work, low-melting-point Lipowitz alloy was used to shield normal organs and allow accurate tumor-targeted irradiation. Over a three-week period, mice with SUIT-2 xenografts received daily NDAT treatment at different doses (0, 1, 3, or 10 mg/kg body weight) and tumor-targeted irradiation (1 or 5 Gy). Validation was performed with a test dose of 30 Gy to mice bearing SUIT-2 xenografts and resulted in more than 80% reduction in tumor weight, compared to nonirradiated tumor weight. The results of this work showed that NDAT had a radiosensitizing effect in a dose-dependent manner in decreasing tumor growth and viability. An enhanced anticancer effect of NDAT (1 mg/kg body weight) was observed in mice with H1299 xenografts receiving 5 Gy tumor-targeted irradiation, indicated by decreased tumor weight and increased necrosis, compared to nonirradiated tumors. This technique demonstrated accurate tumor-targeted irradiation with new shielding methodology, and combined with thyrointegrin antagonist NDAT treatment, showed anticancer efficacy in pancreatic cancer and non-small cell lung carcinoma.


Assuntos
Poliglactina 910 , Tiroxina/análogos & derivados , Animais , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Treat Res Commun ; 28: 100395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34034044

RESUMO

Integrins are a family of heterodimeric plasma membrane glycoproteins, which regulate tumor growth, angiogenesis, migration, and metastasis. Integrin αvß3 has been recognized as a putative target for the treatment of several cancers. Thus, the characterization of αvß3 distribution in different human tumors is of substantial interest in tumor targeting and its suppression. In this study we evaluated the expression of integrin αvß3 in different cancer types to define the expression pattern in cancer model. Furthermore, we investigated the effect of novel αvß3 antagonist Diaminopropane Tetraiodothyroacetic acid conjugated to poly (lactic-co-glycolic acid) polymer and its nanoformulated form (NDAT), on different cancer cell lines both in vitro and in xenografts. In vitro, NDAT downregulated αv and ß3 monomer expression. In vivo in tumor xenografts, similarly, NDAT downregulated αv and ß3. Distinct reduction in tumor weight and viability was observed in glioblastoma xenografts treated with NDAT. Furthermore, NDAT was safe and tolerable in mice treated with high doses. In conclusion, NDAT is an effective and safe inhibitor of integrin αvß3 expression in various cancer types, which indicates its impact on the targetability and suppression of αvß3-associated tumor functions.


Assuntos
Antineoplásicos/administração & dosagem , Integrina alfaVbeta3/antagonistas & inibidores , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Tiroxina/análogos & derivados , Animais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/genética , Masculino , Camundongos Nus , Neoplasias/genética , Tiroxina/administração & dosagem , Resultado do Tratamento
13.
J Med Chem ; 64(9): 6300-6309, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33886292

RESUMO

We have previously reported that the αvß3 inhibitor P-bi-TAT, a bifunctional version of the thyroid hormone metabolite tetraiodothyroacetic acid (tetrac) conjugated to polyethylene glycol (PEG) MW 4000, has excellent efficacy in a glioblastoma multiforme (GBM) mouse model. However, bioanalysis problems due to PEG polydispersity and large-scale synthesis issues led to a search for new molecules, culminating in the discovery of fb-PMT, a conjugate of tetrac and monodisperse PEG36, with a lipophilic 4-fluorobenzyl group at the opposite end of the PEG chain. fb-PMT reduces GBM tumor growth and viability by up to 98%, is suitable for large-scale synthesis, and is amenable to bioanalysis using mass spectrometry-based detection. We also showed that changes in lipophilicity at the opposite end of the PEG chain from the active tetrac component affected the proton NMR chemical shift of the tetrac moiety in D20 and brain levels of the compound after subcutaneous dosing.


Assuntos
Ácido Acético/química , Ácido Acético/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Glioblastoma/patologia , Integrina alfaVbeta3/antagonistas & inibidores , Ácido Acético/síntese química , Ácido Acético/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Polietilenoglicóis/química
15.
Front Oncol ; 11: 793810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155195

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is associated with poor long-term survival, even with newer therapeutic agents. Here, we show the results of our preclinical study, in which we evaluated the efficacy of a new thyrointegrin αvß3 antagonist, named fluorobenzyl polyethylene glycol conjugated tetraiodothyroacetic acid (fb-PMT). METHODS AND RESULTS: fb-PMT (NP751) is a potent αvß3 antagonist of molecular weight of 2,478.9 Da. it represents a conjugate of tetraiodothyroacetic acid (tetrac) and monodisperse polyethylene glycol (PEG36), with a 4-fluorobenzyl group capping the other end of the PEG. fb-PMT effectively suppresses the malignant growth of human acute myeloid leukemia (AML) after successful engraftment in transgenic NSG-S xenograft mouse models of either established human AML cell line or primary AML cells. Daily treatment with fb-PMT (1-10 mg/kg body weight) subcutaneously (s.c.) for 3-4 weeks was associated with marked regression of leukemogenesis and extended survival in both models. The efficiency of the fb-PMT therapy was verified using in vivo imaging system (IVIS) imaging, flow cytometry, and histopathological examination to monitor the engraftment of leukemic cells in the bone marrow and other organs. fb-PMT therapy for 3-4 weeks at 3 and 10 mg/kg daily doses exhibited significant reduction (p < 0.0001) of leukemic cell burden of 74% and >95%, respectively. All fb-PMT-treated mice in the 10 mg/kg treatment arm successfully maintained remission after discontinuing the daily treatment. Comprehensive fb-PMT safety assessments demonstrated excellent safety and tolerability at multiple folds above the anticipated human therapeutic doses. Lastly, our genome-wide microarray screens demonstrated that fb-PMT works through the molecular interference mechanism with multiple signaling pathways contributing to growth and survival of leukemic cells. CONCLUSION: Our preclinical findings of the potent anticancer activities of fb-PMT and its favorable safety profiles warrant its clinical investigation for the effective and safe management of AML.

16.
Nutr Cancer ; 73(8): 1350-1356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32757677

RESUMO

Pomegranate fruit extract contains many polyphenols and flavonoids of diverse biological importance including anticancer potential. In cancer, the angiogenesis process facilitates solid cancer growth and metastasis. Here, the antiangiogenic effect of pomegranate fruit extract against human pancreatic cancer (Suit-2) and colon (colo205) cell lines in the chick chorioallantoic membrane (CAM) model was studied along with the effect of pomegranate fruit extract on fibroblast growth factor (FGF2). Pomegranate fruit extract significantly reduced the tumor weight and hemoglobin content in CAM models of pancreatic Suit-2 and colon colo205.


Assuntos
Neoplasias do Colo , Punica granatum , Animais , Membrana Corioalantoide , Frutas , Humanos , Extratos Vegetais/farmacologia
17.
Acta Physiol (Oxf) ; 231(2): e13556, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32894635

RESUMO

AIMS: In the pathogenesis of several diseases, neo-angiogenesis is increased (e.g. tumour growth). The peptide L-glutamyl-L-tryptophan (EW/IM862) has been claimed to exhibit inhibitory effects on tumour growth in vivo. However, the potential role of natural peptides with respect to anti-angiogenic properties is unsettled. The current study explores anti-angiogenic effects of the dipeptides WL, EW, IW and WE. METHODS AND RESULTS: Using a bottom-up strategy, we first evaluated the effects of the peptides on VEGFR-2 signalling and quantified their effects in different angiogenesis assays. WL consistently had the strongest effects on phosphorylation of VEGFR-2 and downstream signalling. Therefore, this peptide was chosen in comparison with EW to further assess anti-angiogenic properties. However, sprout formation in three-dimensional (3D) fibrin gel bead assay was significantly inhibited by EW only. Furthermore, vessel sprouting in the mouse aortic ring assay was decreased by the presence of WL and EW compared to control. Results from a chorioallantoic membrane assay showed that under vascular endothelial growth factor (VEGF) stimulation WL and EW decreased the number of blood vessels versus control. These results were in line with those obtained in a matrigel plug assay. The VEGF-induced increase in the haemoglobin content was nearly abolished when treatment was combined with either WL or EW application. In the murine model of oxygen-induced retinopathy, WL exhibited a small albeit significant anti-angiogenic effect. CONCLUSION: Comprehensive screening of WL suggests an anti-angiogenic effect, demonstrated in in vitro, ex vivo and in vivo models. Thus, WL is a dipeptide with potential anti-angiogenic effects and is worthy for further exploration.


Assuntos
Triptofano , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular , Dipeptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Patológica , Triptofano/farmacologia
18.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806608

RESUMO

BACKGROUND/AIM: natural products are a potential source for drug discovery and development of cancer chemoprevention. Considering that drugs currently available for the treatment of inflammatory and cancer conditions show undesirable side effects, this research was designed to evaluate, for the first time, the in vitro anticancer activity of Algerian Lavandula stoechas essential oil (LSEO) against different cancer cell lines, as well as its in vitro and in vivo topical and acute anti-inflammatory properties. MATERIALS AND METHODS: the LSEO was extracted by steam distillation, and chemical composition analysis was performed using gas chromatography. The main compounds identified in LSEO were oxygenated monoterpenes, such as 1,8-Cineole (61.36%). LSEO exhibited a potent anti-inflammatory activity using the xylene-induced mouse ear edema model. RESULTS: LSEO (200 and 20 mg/kg) was able to significantly reduce (p < 0.05) the carrageenan-induced paw edema with a similar effect to that observed for the positive control. Topical application of LSEO at doses of 82 and 410 mg/kg significantly reduced acute ear edema in 51.4% and 80.1% of the mice, respectively. Histological analysis confirmed that LSEO inhibited the skin inflammatory response. Moreover, LSEO was tested for its antitumor activity against different cancer cell lines. LSEO was found to be significantly active against human gastric adenocarcinoma (AGS), Melanoma MV3, and breast carcinoma MDA-MB-231 cells, with median inhibitory concentration (IC50) values of 0.035 ± 0.018, 0.06 ± 0.022 and 0.259 ± 0.089 µL/mL, respectively. Altogether, these results open a new field of investigation into the characterization of the molecules involved in anti-proliferative processes. CONCLUSION: We suggest that LSEO, with 1,8-Cineole as the major active component, is a promising candidate for use in skin care products with anti-inflammatory and anticancer properties. The results of this study may provide an experimental basis for further systematic research, rational development, and clinical utilization of lavender resources.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Eucaliptol , Lavandula/química , Neoplasias/tratamento farmacológico , Óleos Voláteis , Óleos de Plantas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Eucaliptol/química , Eucaliptol/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia
19.
Int J Nanomedicine ; 15: 2259-2268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280218

RESUMO

PURPOSE: This study was designed to determine the potential effect of nanoencapsulated bioactive compounds from different natural sources on human pancreatic cancer. BACKGROUND: Pancreatic cancer carries the highest fatality rate among all human cancers because of its high metastatic potential and late presentation at the time of diagnosis. Hence there is a need for improved methods to prevent and treat it. Natural products, such as 3, 3'-diindolylmethane (DIM) and ellagic acid (EA) demonstrated anticancer efficacy against various cancer types. However, DIM is insoluble. Hence, using nanotechnology to encapsulate these compounds in combination with EA might improve their physical and chemical properties and their delivery to the cancer cells. METHODS: Human pancreatic cancer cells, namely SUIT2-luciferase transfected, were used to examine the effects of DIM or EA and their nanoformulation in poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) [PLGA-PEG] nanoparticles (NPs) on SUIT2-luciferase cell viability/proliferation over 24 hrs. Additionally, effects on tumor weight and angiogenesis were determined using the chick chorioallantoic membrane (CAM) tumor implant model. RESULTS: Both DIM and EA PLGA-PEG NPs resulted in rapid suppression of pancreatic cancer cell viability/proliferation within 24 hrs (P < 0.01), while the non-encapsulated DIM and EA did not show any significant effect on SUIT2 cancer cell viability or cell proliferation (MTT assay). In the CAM pancreatic cancer cell (SUIT2) implant model, results showed a greater suppression of tumor weight (P < 0.01), tumor cell viability, and tumor angiogenesis (P < 0.01) for DIM NPs and EA NPs and their combinations versus DIM or EA alone. CONCLUSION: Nanoformulation of DIM and EA resulted in a more effective suppression of pancreatic cancer cell viability, pancreatic tumor weight, implanted cancer cell viability, and tumor angiogenesis as compared with these bioactive compounds alone.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/química , Ácido Elágico/farmacologia , Indóis/farmacologia , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Ácido Elágico/administração & dosagem , Humanos , Indóis/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias Pancreáticas/patologia , Poliésteres/química , Polietilenoglicóis/química
20.
Molecules ; 25(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244860

RESUMO

Cancer is a multifactorial disorder that induces mortality worldwide, and the colorectal type is the third most common cancer globally. Resveratrol (RSV) is a natural compound with an effective anticancer effect, especially against colorectal cancer, and therefore numerous studies recommended its use in colorectal cancer prevention and treatment. The current study investigated the effect of either RSV or its nanoformulation (NP-RSV) on the growth and vascularity of xenograft and orthotopic mice models in colon cancer (COLO205-luc). Both RSV and NP-RSV induced significant reductions in tumor growth and the hemoglobin percentages of the tumor mass, but NP-RSV showed greater bioavailability and efficacy than RSV. Generally, we recommend using NP-RSV as a therapeutic to control colon cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Composição de Medicamentos , Resveratrol/farmacologia , Nanomedicina Teranóstica , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Resveratrol/química , Resveratrol/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...