Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 257: 155295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603841

RESUMO

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Assuntos
Ácido Glicirretínico , Nanopartículas , Humanos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Antivirais/farmacologia , Fumaça/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fumar Cigarros/efeitos adversos
2.
Nanoscale Adv ; 6(8): 2026-2037, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633044

RESUMO

Breast cancer has a poor prognosis due to the toxic side effects associated with high doses of chemotherapy. Liposomal drug encapsulation has resulted in clinical success in enhancing chemotherapy tolerability. However, the formulation faces severe limitations with a lack of colloidal stability, reduced drug efficiency, and difficulties in storage conditions. Nanoarchaeosomes (NA) are a new generation of highly stable nanovesicles composed of the natural ether lipids extracted from archaea. In our study, we synthesized and characterized the NA, evaluated their colloidal stability, drug release potential, and anticancer efficacy. Transmission electron microscopy images have shown that the NA prepared from the hyperthermophilic archaeon Aeropyrum pernix K1 was in the size range of 61 ± 3 nm. The dynamic light scattering result has confirmed that the NA were stable at acidic pH (pH 4) and high temperature (70 °C). The NA exhibited excellent colloidal stability for 50 days with storage conditions at room temperature. The cell viability results have shown that the pure NA did not induce cytotoxicity in NIH 3T3 fibroblast cells and are biocompatible. Then NA were loaded with doxorubicin (NAD), and FTIR and UV-vis spectroscopy results have confirmed high drug loading efficiency of 97 ± 1% with sustained drug release for 48 h. The in vitro cytotoxicity studies in MCF-7 breast cancer cell lines showed that NAD induced cytotoxicity at less than 10 nM concentration. Fluorescence-activated cell sorting (FACS) results confirmed that NAD induced late apoptosis in nearly 92% of MCF-7 cells and necrosis in the remaining cells with cell cycle arrest at the G0/G1 phase. Our results confirmed that the NA could be a potential next-generation carrier with excellent stability, high drug loading efficiency, sustained drug release ability, and increased therapeutic efficacy, thus reducing the side effects of conventional drugs.

3.
J Mater Chem B ; 12(20): 4843-4853, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38444277

RESUMO

Metallic nanomaterials have gained significant attention in cancer therapy as potential nanocarriers due to their unique properties at the nanoscale. However, nanomaterials face several drawbacks, including biocompatibility, stability, and cellular uptake. Hematite (α-Fe2O3) nanoparticles are emerging as promising nano-carriers to reduce adverse outcomes of conventional chemotherapeutics. However, the shape-mediated drug carrier mechanics of hematite nanomaterials are not raveled. In this study, we tailored hematite nanoparticles in ellipsoidal (EHNP) and spherical (SHNP) shapes with excellent biocompatibility and efficient drug encapsulation and release. We elucidate that EHNP exhibits higher cellular uptake than SHNP. With effective cellular internalization, the cisplatin-loaded EHNP showed excellent cytotoxicity with an IC50 value of 200 nM compared to the cisplatin-loaded SHNP. The flow cytometry cell sorting (FACS) analysis showed a four-fold increase in cell death by arresting the cells at the G0/G1 and G1 phases for cis-EHNP compared to cis-SHNP. The results show that ellipsoidal-shaped hematite nanoparticles can act as attractive nanocarriers with improved therapeutic efficacy in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Cisplatino , Portadores de Fármacos , Compostos Férricos , Humanos , Compostos Férricos/química , Compostos Férricos/farmacologia , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Cisplatino/química , Feminino , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células MCF-7
4.
Int J Biol Macromol ; 259(Pt 2): 129250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199551

RESUMO

This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level. Moreover, COS induces the upregulation of molecular markers, including Runx2, Type I collagen, ALP, osteocalcin, and osteonectin in mouse MSCs. Zebrafish studies further demonstrate COS's anti-osteoporotic effects, showcasing its ability to expedite fin fracture repair, vertebral mineralization, and bone mineralization in dexamethasone-induced osteoporosis models. The scale regenerative study reveals that COS mitigates the detrimental effects of dexamethasone induced osteoclastic activity, reducing TRAP and hydroxyproline levels while elevating the expression of Runx2a MASNA isoform, collagen2α, OC, and ON mRNAs. Additionally, COS enhances calcium and phosphorus levels in regenerated scales, impacting the bone-healthy calcium-to­phosphorus ratio. The study also suggests that COS modulates the MMP3-Osteopontin-MAPK signaling pathway. Overall, this comprehensive investigation underscores the potential of COS to prevent and treat osteoporosis. Its multifaceted cellular and molecular effects, combined with in vivo bone regeneration and repair, propose that COS may be effective in addressing osteoporosis and related bone disorders. Nonetheless, further research is imperative to unravel underlying mechanisms and optimize clinical applications.


Assuntos
Quitosana , Osteoporose , Camundongos , Animais , Peixe-Zebra/metabolismo , Quitosana/metabolismo , Cálcio/metabolismo , Osteogênese , Osteoporose/metabolismo , Diferenciação Celular , Dexametasona/farmacologia , Osteoblastos , Fósforo/metabolismo
5.
ACS Omega ; 9(1): 67-80, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222554

RESUMO

Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.

7.
ACS Chem Neurosci ; 14(19): 3655-3664, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37718544

RESUMO

Amyloid-ß [Aß(1-40)] aggregation into a fibrillar network is one of the major hallmarks of Alzheimer's disease (AD). Recently, a few studies reported that polyphosphate (polyP), an anionic biopolymer that participates in various cellular physiological processes in humans, induces fibrilization in many amyloidogenic proteins [ 2020 Alzheimer's Disease Facts and Figures; John Wiley and Sons Inc., 2020; Tanzi, R. E.; Bertram, L. Cell 2005, 120, 545-555; Selkoe, D. J. Proc. Natl. Acad. Sci. U.S.A. 1995, 275, 630-631; and Rambaran, R. N.; Serpell, L. C. Prion 2008, 2, 112-117]. However, the role of polyP in Aß(1-40) fibrilization and the underlying mechanism are unclear. In this study, we report experimental investigations on the role of polyP in the fibrilization kinetics of Aß(1-40). It is found that polyP exhibits a dual effect depending upon the pH value. At pH = 7 (neutral), polyP inhibits amyloid fibrilization in a dose-dependent manner similar to negatively charged nanoparticles. On the contrary, at pH = 3 (acidic), polyP accelerates amyloid fibrilization kinetics via liquid-liquid phase separation (LLPS), wherein the protein-rich droplets contain mature fibrils. In the parameter space spanned by concentrations of Aß(1-40) and polyP, a phase diagram is constructed to demark the domain where LLPS is observed at pH = 3. Characterization of the protein aggregates, secondary structure content in the aggregates, and cell viability studies in the presence of aggregates are discussed at both pH values. This study reveals that anionic biopolymers can modulate amyloid fibrilization kinetics, linked to neurodegenerative diseases, depending upon their local concentrations and pH.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estrutura Secundária de Proteína , Amiloide/metabolismo
8.
Methods Mol Biol ; 2478: 25-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063317

RESUMO

Force spectroscopy on single molecular machines generating piconewton forces is often performed using optical tweezers. Since trapping forces scale with the particle volume, piconewton-force measurements so far required micron-sized probes practically limiting the spatiotemporal resolution. Here, we have overcome this limit by developing high-refractive index germanium nanospheres as ultraresolution trapping probes. With a refractive index of 4.4, their trapping efficiency and maximum force per power is more than 10-fold higher compared to silica spheres of equal size. Therefore, the use of germanium allows piconewton-force measurements with nanometer sized probes. Using 70-nm-diameter germanium nanospheres as trappable optical probes (GeNTOPs), we could show that kinesin-1 walks with 4-nm-center-of-mass steps. In the long-term, the application of these novel high-precision GeNTOPs will provide new insight into the working mechanism of molecular machines and are promising candidates for other applications in microscopy, optoelectronics, and nanophotonics.


Assuntos
Germânio , Nanosferas , Nanotecnologia/métodos , Pinças Ópticas , Dióxido de Silício/química
9.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34736218

RESUMO

Amyloid ß (Aß40) is a class of amyloidogenic proteins known to aggregate into a fibrillar network. The rate of aggregation and fibril yield is sensitive to external energy input, such as shear. In this work, simple shear and shaking experiments are performed on Aß40 solution using a Couette cell and an orbital shaker, respectively. Experiments show that, under uniform shear, both the mass of fibrils and aggregation rate increase with the shear rate. In the case of orbital shaking, the lag time decreases with the rotational speed of the shaker, but the final fibril mass is the same for all agitation speeds. To explain this contrasting behavior of aggregation kinetics, a population balance model is developed to account for the effect of shear on the aggregation of Aß. The kinetic model includes primary nucleation, secondary nucleation, elongation, fragmentation, and depolymerization steps. The effect of steady uniform shear is encoded in the depolymerization rate constant (kd), and it is shown that kd decreases with shear rate initially and saturates at high shear rates. A competition between elongation and depolymerization rates yields different equilibrium masses of fibril at different shear rates. The model results agree quantitatively well with experimental data on the rate of aggregation and mass of fibrils as a function of shear rate. The modeling framework can be used to explain the shear rate-dependent aggregation of other amyloidogenic proteins.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Proteínas Amiloidogênicas , Cinética
10.
Langmuir ; 37(45): 13460-13470, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34730962

RESUMO

Porous silica materials are often used for drug delivery. However, systems for simultaneous delivery of multiple drugs are scarce. Here we show that anisotropic and amphiphilic dumbbell core-shell silica microparticles with chemically selective environments can entrap and release two drugs simultaneously. The dumbbells consist of a large dense lobe and a smaller hollow hemisphere. Electron microscopy images show that the shells of both parts have mesoporous channels. In a simple etching process, the properly adjusted stirring speed and the application of ammonium fluoride as etching agent determine the shape and the surface anisotropy of the particles. The surface of the dense lobe and the small hemisphere differ in their zeta potentials consistent with differences in dye and drug entrapment. Confocal Raman microscopy and spectroscopy show that the two polyphenols curcumin (Cur) and quercetin (QT) accumulate in different compartments of the particles. The overall drug entrapment efficiency of Cur plus QT is high for the amphiphilic particles but differs widely between Cur and QT compared to controls of core-shell silica microspheres and uniformly charged dumbbell microparticles. Furthermore, Cur and QT loaded microparticles show different cancer cell inhibitory activities. The highest activity is detected for the dual drug loaded amphiphilic microparticles in comparison to the controls. In the long term, amphiphilic particles may open up new strategies for drug delivery.


Assuntos
Curcumina , Dióxido de Silício , Anisotropia , Sistemas de Liberação de Medicamentos , Quercetina
11.
Cytoskeleton (Hoboken) ; 78(5): 177-184, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310069

RESUMO

Microtubules are highly dynamic cellular filaments and an accurate control of their length is important for many intracellular processes like cell division. Among other factors, microtubule length is actively modulated by motors from the kinesin superfamily. For example, yeast kinesin-8, Kip3, motors depolymerize microtubules by a cooperative, force- and length-dependent mechanism. However, whether single motors can also depolymerize microtubules is unclear. Here, we measured how single kinesin motors influenced the stability of microtubules in an in vitro assay. Using label-free interference reflection microscopy, we determined the spontaneous microtubule depolymerization rate of stabilized microtubules in the presence of kinesins. Surprisingly, we found that both single Kip3 and nondepolymerizing kinesin-1 transport motors, used as a control, stabilized microtubules further. For Kip3, this behavior is contrary to the collective force-dependent depolymerization activity of multiple motors. Because of the control measurement, the finding may hint at a more general stabilization mechanism. The complex, concentration-dependent interaction with microtubule ends provides new insights into the molecular mechanism of kinesin-8 and its regulatory function of microtubule length.


Assuntos
Cinesinas , Proteínas de Saccharomyces cerevisiae , Microtúbulos , Saccharomyces cerevisiae
12.
Science ; 371(6530)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33574186

RESUMO

Kinesin motors are essential for the transport of cellular cargo along microtubules. How the motors step, detach, and cooperate with each other is still unclear. To dissect the molecular motion of kinesin-1, we developed germanium nanospheres as ultraresolution optical trapping probes. We found that single motors took 4-nanometer center-of-mass steps. Furthermore, kinesin-1 never detached from microtubules under hindering load conditions. Instead, it slipped on microtubules in microsecond-long, 8-nanometer steps and remained in this slip state before detaching or reengaging in directed motion. Unexpectedly, reengagement and thus rescue of directed motion was more frequent. Our observations broaden our knowledge on the mechanochemical cycle and slip state of kinesin. This state and rescue need to be accounted for to understand long-range transport by teams of motors.


Assuntos
Germânio , Cinesinas/química , Cinesinas/metabolismo , Nanosferas , Pinças Ópticas , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Cinética , Bicamadas Lipídicas , Microtúbulos/metabolismo , Modelos Biológicos , Imagem Individual de Molécula
13.
Nanoscale Adv ; 2(9): 4003-4010, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132798

RESUMO

Gold nanoparticles are intriguing because of their unique size- and shape-dependent chemical, electronic and optical properties. Gold nanorods (AuNRs) are particularly promising for various sensor applications due to their tip-enhanced plasmonic fields. For biomolecule attachment, AuNRs are often functionalized with proteins. However, by their intrinsic size such molecules block the most sensitive near-field region of the AuNRs. Here, we used short cationic thiols to functionalize AuNRs. We show that the functionalization layer is thin and that these polycationic AuNRs bind in vitro to negatively charged microtubules. Furthermore, we can plasmonically stimulate light emission from single AuNRs in the absence of any fluorophores and, therefore, use them as bleach- and blinkfree microtubule markers. We expect that polycationic AuNRs may be applicable to in vivo systems and other negatively charged molecules like DNA. In the long-term, microtubule-bound AuNRs can be used as ultrasensitive single-molecule sensors for molecular machines that interact with microtubules.

14.
Nano Lett ; 19(12): 8877-8886, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31746618

RESUMO

Biocompatible surfaces are important for basic and applied research in life science with experiments ranging from the organismal to the single-molecule level. For the latter, examples include the translocation of kinesin motor proteins along microtubule cytoskeletal filaments or the study of DNA-protein interactions. Such experiments often employ single-molecule fluorescence or force microscopy. In particular for force measurements, a key requirement is to prevent nonspecific interactions of biomolecules and force probes with the surface, while providing specific attachments that can sustain loads. Common approaches to reduce nonspecific interactions include supported lipid bilayers or PEGylated surfaces. However, fluid lipid bilayers do not support loads and PEGylation may require harsh chemical surface treatments and have limited reproducibility. Here, we developed and applied a supported solid lipid bilayer (SSLB) as a platform for specific, load bearing attachments with minimal nonspecific interactions. Apart from single-molecule fluorescence measurements, anchoring molecules to lipids in the solid phase enabled us to perform force measurements of molecular motors and overstretch DNA. Furthermore, using a heating laser, we could switch the SSLB to its fluid state allowing for manipulation of anchoring points. The assay had little nonspecific interactions, was robust, reproducible, and time-efficient, and required less hazardous and toxic chemicals for preparation. In the long term, we expect that SSLBs can be widely employed for single-molecule fluorescence microscopy, force spectroscopy, and cellular assays in mechanobiology.


Assuntos
DNA/química , Cinesinas/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Microtúbulos , Modelos Químicos , Microtúbulos/química , Microtúbulos/ultraestrutura
15.
Langmuir ; 35(21): 6962-6970, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31030521

RESUMO

Plaques of amyloid beta (Aß) protein are associated with neurodegenerative diseases, and preventing their formation and dissolution of plaques are essential to the development of therapeutics. In this study, silver triangular nanoplates (AgTNPs) are shown to dissolve mature Aß fibrils because of their plasmonic photothermal property. Mature Aß fibrils treated with AgTNPs under near-infrared (NIR)-illuminated conditions are dissolved in less than 1 h, while an equal concentration of silver spherical nanoparticles took about 70 h. The concentration of the fibrils decreased from 10 to 0.3 µM upon treating the amyloid fibrils with AgTNPs under NIR. AgTNPs are also shown to prevent the formation of Aß fibrils by selective binding to the positively charged amyloidogenic sequence of the Aß monomer. The kinetics of inhibition by AgTNPs follows the predictions of the detailed kinetic model (Ramesh et al., Langmuir 2018, 34, 4004-4012). The kinetics of dissolution and inhibition are characterized by Congo red/ThT assay, transmission electronic microscopy, atomic force microscopy, and attenuated total reflectance Fourier transform-infrared spectroscopy. Cell viability studies on SH-SY5Y and BE-(2)-C cells using 3-[4,5-dimethy-lthi-azol-2-yl]-2,5-diphenyl-tetrazdium bromide and lactate dehydrogenase assay show that the viability of the cells increased from 33 to 70% on treating the cells with AgTNP-incubated Aß fibrils compared to the mature Aß fibrils. The study provides new insights to design plasmonic nanoparticle-based therapeutics to cure neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides , Nanopartículas Metálicas/química , Prata , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Prata/química , Prata/farmacologia
16.
Langmuir ; 34(13): 4004-4012, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29553751

RESUMO

Experiments have shown that charged nanoparticles (NP) inhibit, partially or completely, the aggregation of Aß protein monomers into fibrils. The equilibrium fibril content is found to be inversely proportional to the concentration of NP. In this work, we report a kinetic model for the fibrillation of Aß protein in the presence of NP. In the model, apart from nucleation, elongation and fragmentation processes, the effect of NP is considered to cause a conformational change to the protein monomer, making the latter incompatible for aggregation. The simulated results explain the growth kinetics of pure Aß (1-40) protein, and the kinetics in the presence of NP. The NP-monomer interaction considered in the model captures the significant effect of NP on the fibrillation process at a very molar ratio (NP to Aß monomer) as low as 10-4. The model predictions are compared with two different NP systems, namely, gold and silica NP. The model can be applied to explain the inhibitory effect of other additives such as small molecules, NP, lipids, and surfactants that show a similar inhibition trend for fibril formation of Aß and other proteins.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Modelos Biológicos , Nanopartículas , Peptídeos beta-Amiloides/química , Cinética
17.
Phys Chem Chem Phys ; 19(28): 18494-18504, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28682382

RESUMO

Biocompatible and colloidally stable gold nanorods (GNRs) with well-defined plasmonic properties are essential for biomedical and theranostic applications. The as-synthesized GNRs using the seed-mediated method are stabilized by the surfactant, cetyltrimethylammonium bromide (CTAB), which is known for its cytotoxicity in many cell lines. Biocompatible GNRs synthesized using known protocols exhibit some extent of cytotoxicity and colloidal instability because of the incomplete removal of CTAB. We report a facile method for the efficient removal of CTAB molecules with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid molecules, which are naturally present in cell membranes. The kinetics of the ligand exchange process is studied using surface-enhanced Raman scattering (SERS) and corroborated with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. From colloidal stability studies using dynamic light scattering (DLS) and UV-Vis spectroscopy, the optimal lipid concentration and duration required for the successful ligand exchange of CTAB by DMPC are reported. Using thermogravimetric analysis, the surface concentration of DMPC on colloidally stable GNRs is found to be approximately 9 molecules per nm2. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays show that the surface-modified DMPC-GNRs have significantly better biocompatibility than those of CTAB-GNRs. Studies on the ligand exchange, colloidal stability and biocompatibility of DMPC-GNRs with aspect ratios ranging from 2.2 to 4.2 demonstrate the robustness of the proposed method. The results provide insights into the important factors to be considered while designing biocompatible GNRs suitable for applications in nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Nanotubos/química , Células 3T3 , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cetrimônio , Compostos de Cetrimônio/química , Coloides/química , Difusão Dinâmica da Luz , Humanos , Células MCF-7 , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Análise Espectral Raman , Tensoativos/química , Termogravimetria , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
18.
ACS Chem Neurosci ; 8(10): 2325-2334, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28737894

RESUMO

Extracellular plaques of amyloid beta (Aß) fibrils and neurofibrillary tangles are known to be associated with neurological diseases such as Alzheimer's disease. Studies have shown that spherical nanoparticles inhibit the formation of Aß fibrils by intercepting the nucleation and growth pathways of fibrillation. In this report, gold nanorods (AuNRs) are used to inhibit the formation of Aß fibrils and the shape-dependent plasmonic properties of AuNRs are exploited to faciliate faster dissolution of mature Aß fibrils. Negatively charged, lipid (DMPC) stabilized AuNRs inhibit the formation of fibrils due to selective binding to the positevly charged amyloidogenic sequence of Aß protein. The kinetics of inhibition is characterized by thioflavin T (ThT) fluorescence, transmission electronic microscopy (TEM), atomic force microscopy (AFM), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). An increase in the aspect ratio of DMPC-AuNR in the range of 2.2-4.2 decreased the fibrils content proportionally. Further, the fibrils content is decreased by increasing the concentration of AuNR for all aspect ratios. As AuNR absorb near-infrared (NIR) light and creates a localized hotspot, NIR laser (800 nm) is applied for 2 min to facilitate the thermal dissolution of mature Aß fibrils. Majority of Aß fibrils are disintegrated into smaller fragments after exposure to NIR in the presence of AuNR. Thus, the DMPC-AuNRs exhibit a dual effect: inhibition of fibrillation and NIR laser facilitated dissolution of mature amyloid fibrils. This study essentially provides guidelines to design efficient nanoparticle-based therapeutics for neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Ouro , Nanotubos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Amiloide/química , Humanos , Microscopia Eletrônica de Transmissão/métodos , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos/química , Placa Amiloide/química , Solubilidade , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...