Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293120

RESUMO

Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.

2.
Nat Commun ; 14(1): 2586, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142563

RESUMO

Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Glioma/genética , Astrócitos/metabolismo , Microambiente Tumoral/genética
3.
Nat Commun ; 14(1): 1187, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864031

RESUMO

Ferroptosis is mediated by lipid peroxidation of phospholipids containing polyunsaturated fatty acyl moieties. Glutathione, the key cellular antioxidant capable of inhibiting lipid peroxidation via the activity of the enzyme glutathione peroxidase 4 (GPX-4), is generated directly from the sulfur-containing amino acid cysteine, and indirectly from methionine via the transsulfuration pathway. Herein we show that cysteine and methionine deprivation (CMD) can synergize with the GPX4 inhibitor RSL3 to increase ferroptotic cell death and lipid peroxidation in both murine and human glioma cell lines and in ex vivo organotypic slice cultures. We also show that a cysteine-depleted, methionine-restricted diet can improve therapeutic response to RSL3 and prolong survival in a syngeneic orthotopic murine glioma model. Finally, this CMD diet leads to profound in vivo metabolomic, proteomic and lipidomic alterations, highlighting the potential for improving the efficacy of ferroptotic therapies in glioma treatment with a non-invasive dietary modification.


Assuntos
Ferroptose , Glioma , Humanos , Animais , Camundongos , Metionina , Cisteína , Proteômica , Racemetionina , Glioma/tratamento farmacológico
4.
Lancet Oncol ; 23(11): 1409-1418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243020

RESUMO

BACKGROUND: Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS: We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 µM topotecan 200 µL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS: Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION: In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING: US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.


Assuntos
Glioblastoma , Glioma , Humanos , Topotecan/efeitos adversos , Glioblastoma/tratamento farmacológico , Convecção , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/patologia
5.
Brain ; 145(10): 3666-3680, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35552612

RESUMO

While several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events. Moreover, our approach allowed for observation of how the crosstalk between these neurons varied spatially, as we recorded across an extended region of glioma-infiltrated cortex. In tumour-bearing slices, we observed marked alterations in single units classified as putative fast-spiking interneurons, including reduced firing, activity concentrated within excitatory bursts and deficits in local inhibition. These results were correlated with increases in overall excitability. Mechanistic perturbation of this system with the mTOR inhibitor AZD8055 revealed increased firing of putative fast-spiking interneurons and restoration of local inhibition, with concomitant decreases in overall excitability. Altogether, our findings suggest that diffusely infiltrating glioma affect the interplay between excitatory and inhibitory neuronal populations in a reversible manner, highlighting a prominent role for functional mechanisms linked to mTOR activation.


Assuntos
Glioma , Células Piramidais , Humanos , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Convulsões , Serina-Treonina Quinases TOR
6.
Neuro Oncol ; 24(1): 78-87, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214170

RESUMO

BACKGROUND: Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS: Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard-of-care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard-of-care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS: BOLD asynchrony was directly related to total cellularity (H&E, P = 4 × 10-5), tumor density (IDH1, P = 4 × 10-5; Sox2, P = 3 × 10-5), cellular proliferation (Ki67, P = .002), and inversely related to neuronal density (NeuN, P = 1 × 10-4). CONCLUSIONS: Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação , Saturação de Oxigênio , Carga Tumoral
7.
Cureus ; 13(6): e15423, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34249569

RESUMO

Lumbosacral Tarlov cysts (TCs) have rarely been seen to rupture. Here, we report an unusual presentation of a ruptured TC with intraspinal hemorrhage mimicking carcinomatosis. Pathological diagnosis was obtained using percutaneous biopsy. A conservative approach was utilized and an excellent outcome was achieved. Thus, in cases such as this, a ruptured hemorrhagic TC should be on the differential diagnosis to drive appropriate clinical management decisions.

8.
Genome Med ; 13(1): 82, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975634

RESUMO

BACKGROUND: Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral heterogeneity. METHODS: We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify conserved drug responses and to one additional GBM resection to identify patient-specific responses. RESULTS: We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations, including unexpected effects on the immune microenvironment. CONCLUSIONS: Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective therapies for solid tumors.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , RNA-Seq , Análise de Célula Única , Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Microscopia , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Sensibilidade e Especificidade , Análise de Célula Única/métodos , Resultado do Tratamento , Microambiente Tumoral/genética , Sequenciamento Completo do Genoma
9.
Oper Neurosurg (Hagerstown) ; 15(6): E94-E99, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514319

RESUMO

BACKGROUND AND IMPORTANCE: Cerebral hyperperfusion syndrome (CHS) is a well-known complication of superficial temporal artery (STA) to middle cerebral artery (MCA) bypass for ischemic cerebrovascular disease. While this argues against "low flow" in the bypass construct, flow rates in the graft have not been previously quantified in the setting of CHS. CLINICAL PRESENTATION: A 58-yr-old man presented with recurrent left hemispheric ischemic strokes and fluctuating right hemiparesis and aphasia. Vascular imaging revealed left cervical internal carotid artery occlusion and perfusion imaging confirmed left hemispheric hypoperfusion. After failing to respond to maximal medical therapy, the patient underwent single-barrel STA-MCA bypass. Postoperatively, his symptoms resolved and blood pressure (BP) was strictly controlled within normal range. However, 2 d later, he developed severe expressive aphasia. CTA demonstrated a patent bypass graft and SPECT showed focal hyperperfusion in Broca's speech area. Seizure activity was ruled out. A high graft flow rate of 52 mL/min was documented by quantitative magnetic resonance angiography (MRA). Thus, the diagnosis of CHS was made and managed with strict BP control. The patient exhibited complete recovery of speech over a period of days and was discharged home. Repeat SPECT at 4 mo showed resolution of hyperperfusion and quantitative MRA demonstrated reduction of graft flow rate to 34 mL/min. CONCLUSION: This is the first case of perfusion imaging-proven CHS after STA-MCA bypass, where high graft flow rates are objectively documented. Our observations constitute irrefutable evidence challenging the classic belief that the STA-MCA bypass is a low-flow construct.


Assuntos
Afasia/etiologia , Isquemia Encefálica/cirurgia , Estenose das Carótidas/complicações , Revascularização Cerebral/efeitos adversos , Transtornos Cerebrovasculares/etiologia , Acidente Vascular Cerebral/cirurgia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/etiologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...