Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmacol Rep ; 71(6): 1190-1200, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31669883

RESUMO

BACKGROUND: Increased mortality due to type 2 diabetes mellitus (T2DM) has been associated with renal and/or cardiovascular dysfunction. Dipeptidyl dipeptidase-4 inhibitors (iDPP-4s) may exert cardioprotective effects through their pleiotropic actions via glucagon-like peptide 1-dependent mechanisms. In this study, the pharmacological profile of a new iDPP-4 (LASSBio-2124) was investigated in rats with cardiac and renal dysfunction induced by T2DM. METHODS: T2DM was induced in rats by 2 weeks of a high-fat diet followed by intravenous injection of streptozotocin. Metabolic disturbance and cardiac, vascular, and renal dysfunction were analyzed in the experimental groups. RESULTS: Sitagliptin and LASSBio-2124 administration after T2DM induction reduced elevated glucose levels to 319.8 ±â€¯13.2 and 279.7 ±â€¯17.8 mg/dL, respectively (p < 0.05). LASSBio-2124 also lowered the cholesterol and triglyceride levels from 76.8 ±â€¯8.0 to 42.7 ±â€¯3.2 mg/dL and from 229.7 ±â€¯25.4 to 100.7 ±â€¯17.1 mg/dL, in diabetic rats. Sitagliptin and LASSBio-2124 reversed the reduction of the plasma insulin level. LASSBio-2124 recovered the increased urinary flow in diabetic animals and reduced 24-h proteinuria from 23.7 ±â€¯1.5 to 13.3 ±â€¯2.8 mg (p < 0.05). It also reduced systolic and diastolic left-ventricular dysfunction in hearts from diabetic rats. CONCLUSION: The effects of LASSBio-2124 were superior to those of sitagliptin in the cardiovascular systems of T2DM rats. This new prototype showed promise for the avoidance of comorbidities in a T2DM experimental model, and thus may constitute an innovative therapeutic agent for the treatment of these conditions in the clinical field in future.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coração/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Nefropatias/metabolismo , Masculino , Ratos , Ratos Wistar , Fosfato de Sitagliptina/farmacologia , Estreptozocina/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo
2.
J Cardiovasc Pharmacol ; 74(5): 443-452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31361702

RESUMO

This study was aimed to clarify differences in how specific agonists of the 3 estrogen receptors (ERs) influence diastolic function and the renin-angiotensin system (RAS) after ovariectomy (OVX) in 24 female spontaneously hypertensive rat (SHR) undergoing bilateral OVX at 12 weeks of age. Eight weeks after surgery, rats were randomized (n = 6/group) to receive equipotent, daily treatments of one of the ER agonists (ERα agonist, propyl pyrazole trisphenol 94 µg/kg; ERß agonist, diarylpropionitrile 58 µg/kg; G-protein-coupled estrogen receptor [GPER] agonist, G1 100 µg/kg), or vehicle (peanut oil). After 4 weeks of treatment, left ventricular function/structure and systemic/intracardiac pressure measurements were obtained by echocardiography and a fluid-filled catheter attached to a pressure transducer, respectively. Selective ER agonist treatment with G1 or propyl pyrazole trisphenol led to improvements in diastolic function after estrogen loss when compared with vehicle-treated OVX rats. Although mean arterial blood pressure was not overtly different among groups, chronic G1, but not the other ER ligands, enhanced the in vitro vasorelaxant responsiveness to acetylcholine in aortic rings. These favorable effects of G1 were further linked to reductions in cardiac angiotensin-converting enzyme activity, AT1R protein expression, and Ang II immunoreactivity. Activation of ERß had no effect on cardiac function and did not alter components of the canonical cardiac RAS in comparison with vehicle-treated OVX SHR. These data imply that of the 3 ERs, GPER has a unique role in preserving diastolic function and favorably modulating the cardiac RAS independent of arterial pressure. Specifically, if GPER is pharmacologically activated, it could provide a therapeutic opportunity to limit the development and/or progression of diastolic dysfunction in hypertensive women after estrogen loss.


Assuntos
Ciclopentanos/farmacologia , Estrogênios/farmacologia , Hipertensão/tratamento farmacológico , Miocárdio/metabolismo , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Diástole , Modelos Animais de Doenças , Feminino , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Ovariectomia , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
3.
Steroids ; 148: 1-10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028764

RESUMO

AIM: Investigate cardiac electrical and mechanical dysfunctions elicited by chronic anabolic steroid (AS) overdose. METHODS: Male Wistar rats were treated with nandrolone decanoate (DECA) or vehicle (CTL) for 8 weeks. Electrocardiography and heart rate variability were assessed at weeks 2, 4, and 8. Cardiac reactivity to isoproterenol was investigated in isolated rat hearts. Action potential duration (APD) was measured from left ventricular (LV) muscle strips. L-type Ca2+ current (ICaL), and transient outward potassium current (Ito) were recorded by whole-cell patch-clamp in LV cardiomyocytes. Sarcoplasmic reticulum (SR) Ca2+ mobilization and Ca2+-induced contractile response sensitivity were evaluated in skinned cardiac fibers. Muscarinic type 2 receptor (M2R), ß1-adrenergic receptor (ß1AR), sarcoplasmic Ca2+ ATPase (SERCA-2a), type 2 ryanodine receptor (RyR2), L-type Ca2+ channel (CACNA1), Kv4.2 (KCND2), and Kv4.3 (KCND3) mRNA expression levels were measured by quantitative RT-PCR. RESULTS: Compared with CTL group, DECA group exhibited decreased high frequency band power density (HF) and increased low frequency power density (LF), Cardiac M2R mRNA level was decreased. QTc interval at 2nd, 4th, and 8th week as well as APD30 and APD90 were increased by DECA. Ito density was decreased, while ICaL density was increased by DECA. SR Ca2+ loading and release were decreased by DECA, while contractile sensitivity to Ca2+ was increased versus CTL group. CONCLUSION: DECA overdose induced cardiac rhythmic and mechanical abnormalities that can be associated with autonomic imbalance, up-regulated ICaL and down-regulated Ito, abnormal SR Ca2+ mobilization, and increased contractile sensitivity to Ca2+.


Assuntos
Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Doenças do Sistema Nervoso Autônomo/metabolismo , Cálcio/metabolismo , Doença das Coronárias/induzido quimicamente , Doença das Coronárias/metabolismo , Decanoato de Nandrolona/efeitos adversos , Animais , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doença das Coronárias/diagnóstico , Modelos Animais de Doenças , Eletrocardiografia , Masculino , Decanoato de Nandrolona/administração & dosagem , Ratos , Ratos Wistar
4.
Front Pharmacol ; 9: 1395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574088

RESUMO

Aims: Pulmonary arterial hypertension (PAH) is a disease characterized by an increase in pulmonary vascular resistance and right ventricular (RV) failure. We aimed to determine the effects of human mesenchymal stem cell (hMSC) therapy in a SU5416/hypoxia (SuH) mice model of PAH. Methods and Results: C57BL/6 mice (20-25 g) were exposure to 4 weeks of hypoxia combined vascular endothelial growth factor receptor antagonism (20 mg/kg SU5416; weekly s.c. injections; PAH mice). Control mice were housed in room air. Following 2 weeks of SuH exposure, we injected 5 × 105 hMSCs cells suspended in 50 µL of vehicle (0.6 U/mL DNaseI in PBS) through intravenous injection in the caudal vein. PAH mice were treated only with vehicle. Ratio between pulmonary artery acceleration time and RV ejection time (PAAT/RVET), measure by echocardiography, was significantly reduced in the PAH mice, compared with controls, and therapy with hMSCs normalized this. Significant muscularization of the PA was observed in the PAH mice and hMSC reduced the number of fully muscularized vessels. RV free wall thickness was higher in PAH animals than in the controls, and a single injection of hMSCs reversed RV hypertrophy. Levels of markers of exacerbated apoptosis, tissue inflammation and damage, cell proliferation and oxidative stress were significantly greater in both lungs and RV tissues from PAH group, compared to controls. hMSC injection in PAH animals normalized the expression of these molecules which are involved with PAH and RV dysfunction development and the state of chronicity. Conclusion: These results indicate that hMSCs therapy represents a novel strategy for the treatment of PAH in the future.

5.
J Pain Res ; 11: 2453-2462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464575

RESUMO

OBJECTIVE: To demonstrate the antinociceptive and antihypersensitivity mechanisms of Cris-104 (1-{2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl}piperidine), a novel selective α4ß2* nicotinic acetylcholine receptor (nAChR) agonist, in rodent acute/inflammatory and chronic pain models. MATERIALS AND METHODS: Hot-plate and formalin tests in mice were used to examine Cris-104-induced antinociceptive effects on thermal/inflammatory pain. Cris-104 effects on hypersensitivity, norepinephrine (NE) release in the spinal dorsal horn, and neuronal activity in the locus coeruleus (LC) were examined in rats with lumbar spinal nerve ligation using behavioral, microdialysis, and extracellular recording methods. Cris-104 effects on spontaneous locomotion were examined in an open-field test. RESULTS: Cris-104 induced dose-dependent antinociception effects in hot-plate and formalin tests, and these effects were blocked by the general nAChR antagonist mecamylamine, the selective α4ß2* nAChR antagonist dihydro-beta-erythroidine, and the α2-adrenoceptor antagonist yohimbine, but not by the α1-adrenoceptor antagonist prazosin. Systemic and spinally perfused Cris-104 increased NE concentrations in microdialysates from the spinal cord in both normal and SNL rats. Systemic Cris-104 increased neuronal activity in the LC of normal rats. Mecamylamine blocked the effects of Cris-104 on spinal NE release and LC neuronal activity. Systemic Cris-104 did not affect locomotor activity significantly. CONCLUSION: The α4ß2 neuronal nAChR agonist, Cris-104, was effective for treatment of pain via descending noradrenergic inhibition of pain signaling.

6.
J Biol Chem ; 293(33): 12749-12758, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29954945

RESUMO

Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.


Assuntos
Acetilglucosamina/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais Proximais/patologia , Proteinúria/etiologia , Reabsorção Renal , Animais , Células Cultivadas , Endocitose , Glicosilação , Túbulos Renais Proximais/metabolismo , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Proteinúria/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Suínos
7.
J Gerontol A Biol Sci Med Sci ; 73(9): 1158-1166, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29790948

RESUMO

Pulmonary hypertension (PH) is a disease of women (female-to-male ratio 4:1), and is associated with cardiac and skeletal muscle dysfunction. Herein, the activation of a new estrogen receptor (GPER) by the agonist G1 was evaluated in oophorectomized rats with monocrotaline (MCT)-induced PH. Depletion of estrogen was induced by bilateral oophorectomy (OVX) in Wistar rats. Experimental groups included SHAM or OVX rats that received a single intraperitoneal injection of MCT (60 mg/kg) for PH induction. Animals received s.c. injection of either vehicle or G1, a GPER agonist, (400 µg/kg/day) for 14 days after the onset of disease. Rats with PH exhibited exercise intolerance and cardiopulmonary alterations, including reduced pulmonary artery flow, biventricular remodeling, and left ventricular systolic and diastolic dysfunction. The magnitude of these PH-induced changes was significantly greater in OVX versus SHAM rats. G1 treatment reversed both cardiac and skeletal muscle functional aberrations caused by PH in OVX rats. G1 reversed PH-related cardiopulmonary dysfunction and exercise intolerance in female rats, a finding that may have important implications for the ongoing clinical evaluation of new drugs for the treatment of the disease in females after the loss of endogenous estrogens.


Assuntos
Cardiotônicos , Estrogênios , Tolerância ao Exercício/efeitos dos fármacos , Músculo Esquelético , Receptores Acoplados a Proteínas G/metabolismo , Disfunção Ventricular/prevenção & controle , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Monocrotalina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Ovariectomia/métodos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Disfunção Ventricular/metabolismo , Disfunção Ventricular/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
8.
PLoS One ; 13(4): e0195047, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29677206

RESUMO

INTRODUCTION: Pulmonary hypertension (PH) is characterized by enhanced pulmonary vascular resistance, which causes right ventricle (RV) pressure overload and results in right sided heart failure and death. This work investigated the effectiveness of a combined therapy with PDE5 inhibitor (PDE5i) and a new adenosine A2A receptor (A2AR) agonist in mitigating monocrotaline (MCT) induced PH in rats. METHODS: An in vitro isobolographic analysis was performed to identify possible synergistic relaxation effect between sildenafil and LASSBio 1359 in rat pulmonary arteries (PAs). In the in vivo experiments, PH was induced in male Wistar rats by a single intraperitoneal injection of 60 mg/kg MCT. Rats were divided into the following groups: control (saline injection only), MCT + vehicle, MCT + sildenafil, MCT + LASSBio 1359 and MCT + combination of sildenafil and LASSBio 1359. Fourteen days after the MCT injection, rats were treated daily with oral administration of the regimen therapies or vehicle for 14 days. Cardiopulmonary system function and structure were evaluated by echocardiography. RV systolic pressure and PA endothelial function were measured. RESULTS: Isobolographic analysis showed a synergistic interaction between sildenafil and LASSBio 1359 in rat PAs. Combined therapy with sildenafil and LASSBio 1359 but not monotreatment with low dosages of either sildenafil or LASSBio 1359 ameliorated all of PH related abnormalities in cardiopulmonary function and structure in MCT challenged rats. CONCLUSIONS: The combination of sildenafil and LASSBio 1359 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to improve quality of life and outcomes for PH patients.


Assuntos
Benzamidas/uso terapêutico , Hidrazonas/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Citrato de Sildenafila/uso terapêutico , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Benzamidas/farmacologia , Sinergismo Farmacológico , Hidrazonas/farmacologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Masculino , Monocrotalina , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Citrato de Sildenafila/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
9.
Front Pharmacol ; 8: 858, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255415

RESUMO

Pulmonary arterial hypertension (PAH) is a clinical condition characterized by pulmonary arterial remodeling and vasoconstriction, which promote chronic vessel obstruction and elevation of pulmonary vascular resistance. Long-term right ventricular (RV) overload leads to RV dysfunction and failure, which are the main determinants of life expectancy in PAH subjects. Therapeutic options for PAH remain limited, despite the introduction of prostacyclin analogs, endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and soluble guanylyl cyclase stimulators within the last 15 years. Through addressing the pulmonary endothelial and smooth muscle cell dysfunctions associated with PAH, these interventions delay disease progression but do not offer a cure. Emerging approaches to improve treatment efficacy have focused on beneficial actions to both the pulmonary vasculature and myocardium, and several new targets have been investigated and validated in experimental PAH models. Herein, we review the effects of adenosine and adenosine receptors (A1, A2A, A2B, and A3) on the cardiovascular system, focusing on the A2A receptor as a pharmacological target. This receptor induces pulmonary vascular and heart protection in experimental models, specifically models of PAH. Targeting the A2A receptor could potentially serve as a novel and efficient approach for treating PAH and concomitant RV failure. A2A receptor activation induces pulmonary endothelial nitric oxide synthesis, smooth muscle cell hyperpolarization, and vasodilation, with important antiproliferative activities through the inhibition of collagen deposition and vessel wall remodeling in the pulmonary arterioles. The pleiotropic potential of A2A receptor activation is highlighted by its additional expression in the heart tissue, where it participates in the regulation of intracellular calcium handling and maintenance of heart chamber structure and function. In this way, the activation of A2A receptor could prevent the production of a hypertrophic and dysfunctional phenotype in animal models of cardiovascular diseases.

10.
J Renin Angiotensin Aldosterone Syst ; 18(3): 1470320317722270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748720

RESUMO

BACKGROUND: Diastolic dysfunction develops in response to hypertension and estrogen (E2) loss and is a forerunner to heart failure (HF) in women. The cardiac renin-angiotensin system (RAS) contributes to diastolic dysfunction, but its role with respect to E2 and blood pressure remain unclear. METHODS: We compared the effects of ovariectomy (OVX) or sham surgery on the cardiac RAS, left ventricular (LV) structure/function, and systemic/intracardiac pressures of spontaneously hypertensive rats (SHRs: n = 6 intact and 6 OVX) and age-matched Wistar-Kyoto (WKY: n = 5 intact and 4 OVX) controls. RESULTS: WKY rats were more sensitive to OVX than SHRs with respect to worsening of diastolic function, as reflected by increases in Doppler-derived filling pressures (E/e') and reductions in myocardial relaxation (e'). This pathobiologic response in WKY rats was directly linked to increases in cardiac gene expression and enzymatic activity of chymase and modest reductions in ACE2 activity. No overt changes in cardiac RAS genes or activities were observed in SHRs, but diastolic function was inversely related to ACE2 activity. CONCLUSION: Endogenous estrogens exert a more significant regulatory role upon biochemical components of the cardiac RAS of WKY versus SHRs, modulating the lusitropic and structural components of its normotensive phenotype.


Assuntos
Cardiotônicos/farmacologia , Quimases/metabolismo , Estrogênios/farmacologia , Miocárdio/enzimologia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Peso Corporal/efeitos dos fármacos , Cálcio/metabolismo , Colágeno/metabolismo , Diástole/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
11.
Drug Des Devel Ther ; 11: 553-562, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293100

RESUMO

BACKGROUND: This work evaluated the hypothesis that 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294), an agonist of adenosine A2A receptor, could be beneficial for preventing cardiac dysfunction due to hypertension associated with myocardial infarction (MI). METHODS: Male spontaneously hypertensive rats (SHR) were randomly divided into four groups (six animals per group): sham-operation (SHR-Sham), and myocardial infarction rats (SHR-MI) were treated orally either with vehicle or LASSBio-294 (10 and 20 mg.kg-1.d-1) for 4 weeks. Echocardiography and in vivo hemodynamic parameters measured left ventricle (LV) structure and function. Exercise tolerance was evaluated using a treadmill test. Cardiac remodeling was accessed by LV collagen deposition and tumor necrosis factor α expression. RESULTS: Early mitral inflow velocity was significantly reduced in the SHR-MI group, and there was significant recovery in a dose-dependent manner after treatment with LASSBio-294. Exercise intolerance observed in the SHR-MI group was prevented by 10 mg.kg-1.d-1 of LASS-Bio-294, and exercise tolerance exceeded that of the SHR-Sham group at 20 mg.kg-1.d-1. LV end-diastolic pressure increased after MI, and this was prevented by 10 and 20 mg.kg-1.d-1 of LASSBio-294. Sarcoplasmic reticulum Ca2+ ATPase levels were restored in a dose-dependent manner after treatment with LASSBio-294. Fibrosis and inflammatory processes were also counteracted by LASSBio-294, with reductions in LV collagen deposition and tumor necrosis factor α expression. CONCLUSION: In summary, oral administration of LASSBio-294 after MI in a dose-dependent manner prevented the development of cardiac dysfunction, demonstrating this compound's potential as an alternative treatment for heart failure in the setting of ischemic heart disease with superimposed chronic hypertension.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/prevenção & controle , Hidrazonas/uso terapêutico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Tiofenos/uso terapêutico , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Insuficiência Cardíaca/fisiopatologia , Hidrazonas/administração & dosagem , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR , Tiofenos/administração & dosagem
12.
J Gerontol A Biol Sci Med Sci ; 72(2): 152-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27006078

RESUMO

Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction.


Assuntos
Estrogênios/fisiologia , Coração/anatomia & histologia , Coração/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Fatores Etários , Animais , Feminino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
13.
Eur J Pharm Sci ; 97: 208-217, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836751

RESUMO

RATIONALE: Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling that leads to pulmonary congestion, uncompensated right-ventricle (RV) failure, and premature death. Preclinical studies have demonstrated that the G protein-coupled estrogen receptor (GPER) is cardioprotective in male rats and that its activation elicits vascular relaxation in rats of either sex. OBJECTIVES: To study the effects of GPER on the cardiopulmonary system by the administration of its selective agonist G1 in male rats with monocrotaline (MCT)-induced PH. METHODS: Rats received a single intraperitoneal injection of MCT (60mg/kg) for PH induction. Experimental groups were as follows: control, MCT+vehicle, and MCT+G1 (400µg/kg/daysubcutaneous). Animals (n=5pergroup) were treated with vehicle or G1 for 14days after disease onset. MEASUREMENTS AND MAIN RESULTS: Activation of GPER attenuated exercise intolerance and reduced RV overload in PH rats. Rats with PH exhibited echocardiographic alterations, such as reduced pulmonary flow, RV hypertrophy, and left-ventricle dysfunction, by the end of protocol. G1 treatment reversed these PH-related abnormalities of cardiopulmonary function and structure, in part by promoting pulmonary endothelial nitric oxide synthesis, Ca2+ handling regulation and reduction of inflammation in cardiomyocytes, and a decrease of collagen deposition by acting in pulmonary and cardiac fibroblasts. CONCLUSIONS: G1 was effective to reverse PH-induced RV dysfunction and exercise intolerance in male rats, a finding that have important implications for ongoing clinical evaluation of new cardioprotective and vasodilator drugs for the treatment of the disease.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hipertensão Pulmonar/diagnóstico por imagem , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
14.
An Acad Bras Cienc ; 88(4): 2229-2237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27991959

RESUMO

Piperaceae species can be found worldwide in tropical and subtropical areas and many of them have been used for centuries in traditional folk medicine and in culinary. In Brazil, species of Piperaceae are commonly used in some communities as local anesthetic and analgesic. Countrified communities have known some species of the genus Ottonia as "anestesia" and it is a common habit of chewing leaves and roots of Ottonia species to relief toothache. The purpose of this study is to report our findings on new molecules entities obtained from the roots of Ottonia anisum Spreng, in which local anesthetic activity (sensory blockage) is demonstrated for the first time in vivo guinea pig model. Phytochemical investigation led to the isolation of three amides (pipercallosidine, piperine and valeramide) and in an enriched mixture of seven amides (valeramide, 4,5-dihydropiperlonguminine, N-isobutil-6-piperonil-2-hexenamide, piperovatine, dihydropipercallosidine, pipercallosidine and pipercallpsine). Our findings demonstrated the anesthetic potential for the methanolic extract from roots, its n-hexane partition and amides from O. anisum and it is in agreement with ethnobotanical survey.


Assuntos
Amidas/isolamento & purificação , Anestésicos Locais/isolamento & purificação , Piperaceae/química , Extratos Vegetais/química , Raízes de Plantas/química , Animais , Benzodioxóis/isolamento & purificação , Brasil , Cobaias , Hexanos/isolamento & purificação
15.
Biochem Biophys Res Commun ; 475(1): 81-6, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27173878

RESUMO

The molecular mechanisms of muscle weakness and sarcopenia in postmenopausal women are largely unknown. To determine the effect of a new estrogen receptor, GPR30, in the maintenance of exercise capacity and skeletal muscle function in females, the selective GPR30 agonist, G1 (100 µg/kg/day), or vehicle (V, soybean oil) was administered subcutaneously daily (n = 7 per group) to ovariectomized (OVX) 27-month-old Fischer 344 × Brown Norway (F344BN) female rats. Following 8 weeks of treatment, the exercise capacity (treadmill walk time to exhaustion) was reduced in OVX vs. sham rats (5.1 ± 1.4 vs. 11.0 ± 0.9 min, P < 0.05), and chronic G1 restored exercise capacity (12.9 ± 1.2 min; P < 0.05 vs. OVX-V). Similarly, the peak twitch of electrically stimulated soleus muscles was decreased by 22% in OVX vs. sham rats (P < 0.05), and G1 attenuated this decline (P < 0.05). Western blot analysis showed that chronic G1 treatment attenuated OVX-associated decreases in heat shock protein (HSP) 90, HSP70, and HSP27 expressions. In vitro studies using the L6 myoblast cell line demonstrated that G1 increased mRNA levels of HSPs in cultured cells. Collectively, these data demonstrate that the activation of GPR30 mitigates the adverse effects of estrogen loss on exercise capacity and skeletal muscle contractile function in old F344BN rats. The protective effects of GPR30 might be through its upregulation of heat shock proteins in skeletal muscle.


Assuntos
Força Muscular , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose , Linhagem Celular , Estrogênios/metabolismo , Teste de Esforço , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Contração Muscular , Ovariectomia , RNA Mensageiro/genética , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
16.
Physiol Rep ; 3(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26508737

RESUMO

Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.

17.
BMC Complement Altern Med ; 15: 208, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134625

RESUMO

BACKGROUND: Plants rich in flavonoids, such as açaí (Euterpe oleraceae Mart.), can induce antinociception in experimental animals. Here, we tested an extract obtained from the stones of açaí fruits (açaí stone extract, ASE), a native plant from the Amazon region of Brazil, in models of acute/inflammatory and chronic pain. METHODS: Antinociceptive effects of ASE were evaluated in the hot plate, formalin, acetic acid writhing, carrageenan, and neuropathic pain models, as well as in thermal hyperalgesia and mechanical allodynia models induced by spinal nerve ligation. Antinociceptive activities were modulated by the administration of cholinergic, adrenergic, opioid, and L-arginine-NO antagonists. RESULTS: Oral administration of ASE (30, 100, or 300 mg.kg(-1)) dose-dependently reduced nociceptive responses to acute/inflammatory pain in mice, including thermal hyperalgesia, acetic acid-induced writhing, and carrageenan-induced thermal hyperalgesia. Moreover, ASE reduced the neurogenic and inflammatory phases after intraplantar injection of formalin in mice. The antinociceptive effect of ASE (100 mg · kg(-1)) in a hot plate protocol, was inhibited by pre-treatment with naloxone (1 mg · kg(-1)), atropine (2 mg · kg(-1)), yohimbine (5 mg · kg(-1)), or L-NAME (30 mg · kg(-1)). Furthermore, ASE prevented chronic pain in a rat spinal nerve ligation model, including thermal hyperalgesia and mechanical allodynia. CONCLUSION: ASE showed significant antinociceptive effect via a multifactorial mechanism of action, indicating that the extract may be useful in the development of new analgesic drugs.


Assuntos
Analgésicos , Euterpe/química , Neuralgia/tratamento farmacológico , Extratos Vegetais , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
18.
Int J Cardiol ; 173(2): 154-62, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24630383

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a disease that results in right ventricular (RV) dysfunction. While pulmonary vascular disease is the primary pathological focus, RV hypertrophy and RV dysfunction are the major determinants of prognosis in PAH. The aim of this study was to investigate the effects of (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), an N-acylhydrazone derivative, on the lung vasculature and RV dysfunction induced by experimental PAH. METHODS: Male Wistar rats were injected with a single dose (60mg/kg, i.p.) of monocrotaline (MCT) and given LASSBio-1386 (50mg/kg, p.o.) or vehicle for 14 days. The hemodynamic, exercise capacity (EC), endothelial nitric oxide synthase (eNOS), adenosine A2A receptor (A2AR), sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a), phospholamban (PLB) expression, Ca(2+)-ATPase activity and vascular activity of LASSBio-1386 were evaluated. RESULTS AND CONCLUSIONS: The RV systolic pressure was elevated in the PAH model and reduced from 49.6 ± 5.0 mm Hg (MCT group) to 27.2 ± 2.1 mm Hg (MCT+LASSBio-1386 group; P<0.05). MCT administration also impaired the EC, increased the RV and pulmonary arteriole size, and promoted endothelial dysfunction of the pulmonary artery rings. In the PAH group, the eNOS, A2AR, SERCA2a, and PLB levels were changed compared with the control; in addition, the Ca(2+)-ATPase activity was reduced. These alterations were related with MCT-injected rats, and LASSBio-1386 had favorable effects that prevented the development of PAH. LASSBio-1386 is effective at preventing endothelial and RV dysfunction in PAH, a finding that may have important implications for ongoing clinical evaluation of A2AR agonists for the treatment of PAH.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Benzamidas/farmacologia , Hidrazonas/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/farmacologia , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Animais , Benzamidas/química , Tolerância ao Exercício/efeitos dos fármacos , Hidrazonas/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico por imagem , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/tratamento farmacológico , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos Wistar , Ultrassonografia , Vasodilatação/efeitos dos fármacos
19.
Clin Exp Pharmacol Physiol ; 40(7): 404-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23573962

RESUMO

New chemicals or adjuvants with analgesic effects on chronic pain are needed and clinically relevant due to the limited number of effective compounds that possess these characteristics. LASSBio-873, a pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivative, activates muscarinic cholinergic receptors and has potent analgesic effects on acute and inflammatory pain. The present study evaluated the therapeutic and prophylactic effects of oral administration of LASSBio-873 in a spinal nerve ligation (SNL) model of chronic peripheral nerve injury. LASSBio-873 (100 mg/kg) inhibited the development of thermal hyperalgesia and mechanical allodynia when administered once daily for 7 consecutive days after SNL surgery and reversed these symptoms. LASSBio-873 treatment did not alter rat behaviour in open field testing measured during the first 24 h after administration and again after 7 continuous days administration. The analgesic effect of LASSBio-873 was inhibited by intrathecal methoctramine, an M2 receptor antagonist, implicating the muscarininc M2 receptor signalling pathway in the drug's action. These results reinforce the potential of LASSBio-873 as a possible prototype for the development of more effective alternatives for the treatment of neuropathic pain.


Assuntos
Agonistas Muscarínicos/farmacologia , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Nervos Espinhais/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Medição da Dor/métodos , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Receptor Muscarínico M2/antagonistas & inibidores , Receptor Muscarínico M2/metabolismo , Nervos Espinhais/metabolismo
20.
Br J Pharmacol ; 169(5): 953-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23530610

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats. EXPERIMENTAL APPROACH: PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg(-1)) and 2 weeks later, oral LASSBio-1359 (50 mg·kg(-1)) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed. KEY RESULTS: MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar. CONCLUSION AND IMPLICATIONS: In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Benzamidas/uso terapêutico , Hidrazonas/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Agonistas do Receptor A2 de Adenosina/farmacologia , Administração Oral , Animais , Benzamidas/farmacologia , Colágeno/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hemodinâmica , Hidrazonas/farmacologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Técnicas In Vitro , Masculino , Simulação de Acoplamento Molecular , Monocrotalina , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Ratos Wistar , Receptores A2 de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...