Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 730, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865643

RESUMO

Fronts are ubiquitous discrete features of the global ocean often associated with enhanced vertical velocities, in turn boosting primary production. Fronts thus form dynamical and ephemeral ecosystems where numerous species meet across all trophic levels. Fronts are also targeted by fisheries. Capturing ocean fronts and studying their long-term variability in relation with climate change is thus key for marine resource management and spatial planning. The Mediterranean Sea and the Southwest Indian Ocean are natural laboratories to study front-marine life interactions due to their energetic flow at sub-to-mesoscales, high biodiversity (including endemic and endangered species) and numerous conservation initiatives. Based on remotely-sensed Sea Surface Temperature and Height, we compute thermal fronts (2003-2020) and attracting Lagrangian coherent structures (1994-2020), in both regions over several decades. We advocate for the combined use of both thermal fronts and attracting Lagrangian coherent structures to study front-marine life interactions. The resulting front dataset differs from other alternatives by its high spatio-temporal resolution, long time coverage, and relevant thresholds defined for ecological provinces.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Espécies em Perigo de Extinção , Oceano Índico , Mar Mediterrâneo
2.
Sci Rep ; 10(1): 17902, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087768

RESUMO

Transient mesoscale oceanic eddies in Eastern Boundary Upwelling Systems are thought to strongly affect key regional scale processes such as ocean heat transport, coastal upwelling and productivity. Understanding how these can be modulated at low-frequency is thus critical to infer their role in the climate system. Here we use 26 years of satellite altimeter data and regional oceanic modeling to investigate the modulation of eddy kinetic energy (EKE) off Peru and Chile by ENSO, the main mode of natural variability in the tropical Pacific. We show that EKE tends to increase during strong Eastern Pacific (EP) El Niño events along the Peruvian coast up to northern Chile and decreases off central Chile, while it is hardly changed during Central Pacific El Niño and La Niña events. However the magnitude of the EKE changes during strong EP El Niño events is not proportional to their strength, with in particular the 1972/1973 El Niño event standing out as an extreme event in terms of EKE increase off Peru reaching an amplitude three times as large as that during the 1997/1998 El Niño event, and the 2015/2016 El Niño having instead a weak impact on EKE. This produces decadal changes in EKE, with a similar pattern than that of strong EP El Niño events, resulting in a significant negative (positive) long-term trend off Peru (central Chile).

3.
Sci Total Environ ; 693: 133491, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31362231

RESUMO

Installation of an Ocean Thermal Energy Conversion pilot plant (OTEC) off the Caribbean coast of Martinique is expected to use approximately 100,000 m3 h-1 of deep seawater for its functioning. This study examined the potential effects of the cold nutrient-rich deep seawater discharge on the phytoplankton community living in the surface warm oligotrophic waters before the installation of the pilot plant. Numerical simulations of deep seawater upwelled by the OTEC, showed that a 3.0 °C temperature change, considered as a critical threshold for temperature impact, was never reached during an annual cycle on the top 150 m of the water column on two considered sections centered on the OTEC. The thermal effect should be limited, <1 km2 on the area exhibited a temperature difference of 0.3 °C (absolute value), producing a negligible thermic impact on the phytoplankton assemblage. The impact on phytoplankton of the resulting mixed deep and surface seawater was evaluated by in situ microcosm experiments. Two scenarios of water mix ratio (2% and 10% of deep water) were tested at two incubation depths (deep chlorophyll-a maximum: DCM and bottom of the euphotic layer: BEL). The larger impact was obtained at DCM for the highest deep seawater addition (10%), with a development of diatoms and haptophytes, whereas 2% addition induced only a limited change of the phytoplankton community (relatively higher Prochlorococcus sp. abundance, but without significant shift of the assemblage). This study suggested that the OTEC plant would significantly modify the phytoplankton assemblage with a shift from pico-phytoplankton toward micro-phytoplankton only in the case of a discharge affecting the DCM and would be restricted to a local scale. Since the lower impact on the phytoplankton assemblage was obtained at BEL, this depth can be recommended for the discharge of the deep seawater to exploit the OTEC plant.


Assuntos
Microbiota , Fitoplâncton , Água do Mar/análise , Energia Solar , Região do Caribe , Martinica , Energia Renovável , Temperatura
4.
Sci Rep ; 8(1): 3376, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463896

RESUMO

Wind conditions strongly affect migratory costs and shape flyways and detours for many birds, especially soaring birds. However, whether winds also influence individual variability in migratory choices is an unexplored question. Cory's shearwaters (Calonectris borealis) exhibit migratory flexibility, changing non-breeding destination across the Atlantic Ocean within and between years. Here, we investigated how wind dynamics affect the spatiotemporal migratory behaviour and whether they influence individual choices of non-breeding destination. We analysed 168 GLS tracks of migratory Cory's shearwaters over five years in relation to concurrent wind data. We found no evidence for an association of the use of specific paths or destinations with particular wind conditions. Our results suggest that shearwaters deliberately choose their non-breeding destination, even when the choice entails longer distances and higher energetic costs for displacement due to unfavourable wind conditions en route. Favourable winds trigger migration only when directed towards specific areas but not to others. Despite their dependence on wind for dynamic soaring, Cory's shearwaters show a high individuality in migratory behaviour that cannot be explained by individual birds encountering different meteorological conditions at departure or during migratory movements.

5.
PLoS One ; 6(10): e26672, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046329

RESUMO

BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.


Assuntos
Comportamento de Retorno ao Território Vital , Magnetismo , Tartarugas/fisiologia , Migração Animal , Animais , Geografia , Oceanos e Mares
6.
Proc Natl Acad Sci U S A ; 106(20): 8245-50, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416811

RESUMO

Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel.


Assuntos
Migração Animal , Aves , Comportamento Predatório , Animais , Ecossistema , Comportamento Alimentar , Biologia Marinha , Moçambique , Atum
7.
Curr Biol ; 17(2): 126-33, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17240337

RESUMO

Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.


Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Magnetismo , Comportamento de Nidação/fisiologia , Tartarugas/fisiologia , Animais , Feminino , Oceano Índico , Ilhas do Oceano Índico , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...