Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608278

RESUMO

Routine ultraviolet imaging of the Sun's upper atmosphere shows the spectacular manifestation of solar activity; yet, we remain blind to its main driver, the magnetic field. Here, we report unprecedented spectropolarimetric observations of an active region plage and its surrounding enhanced network, showing circular polarization in ultraviolet (Mg ii h & k and Mn i) and visible (Fe i) lines. We infer the longitudinal magnetic field from the photosphere to the very upper chromosphere. At the top of the plage chromosphere, the field strengths reach more than 300 G, strongly correlated with the Mg ii k line core intensity and the electron pressure. This unique mapping shows how the magnetic field couples the different atmospheric layers and reveals the magnetic origin of the heating in the plage chromosphere.

2.
Appl Opt ; 52(34): 8205-11, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24513819

RESUMO

Spectro-polarimeteric observations in the vacuum-ultraviolet (VUV) region are expected to be developed as a new astrophysics diagnostic tool for investigating space plasmas with temperatures of >10(4) K. Precise measurements of the difference in the extraordinary and ordinary refractive indices are required for developing accurate polarimeters, but reliable information on the birefringence in the VUV range is difficult to obtain. We have measured the birefringence of magnesium fluoride (MgF2) with an accuracy of better than ±4×10(-5) around the hydrogen Lyman-α line (121.57 nm). We show that MgF2 can be applied practically as a half-waveplate for the chromospheric Lyman-alpha spectro-polarimeter (CLASP) sounding rocket experiment and that the developed measurement method can be easily applied to other VUV birefringent materials at other wavelengths.

3.
Science ; 318(5856): 1591-4, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18063790

RESUMO

The heating of the solar chromosphere and corona is a long-standing puzzle in solar physics. Hinode observations show the ubiquitous presence of chromospheric anemone jets outside sunspots in active regions. They are typically 3 to 7 arc seconds = 2000 to 5000 kilometers long and 0.2 to 0.4 arc second = 150 to 300 kilometers wide, and their velocity is 10 to 20 kilometers per second. These small jets have an inverted Y-shape, similar to the shape of x-ray anemone jets in the corona. These features imply that magnetic reconnection similar to that in the corona is occurring at a much smaller spatial scale throughout the chromosphere and suggest that the heating of the solar chromosphere and corona may be related to small-scale ubiquitous reconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...