Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302694

RESUMO

HTLV-1 transforms primary CD4+ T cells in vitro within a short time; however, majority of infected individuals maintain an asymptomatic condition, suggesting there is an equilibrium between the infected cells and the host immunity. In this study, we identified a variation in a major viral antigen epitope, HTLV-1 Tax301-309, in HLA-A24-positive individuals. Mismatch in A24/Tax301-309 multimers impaired detection of anti-Tax CTLs. Notably, over half of the TCRs of the anti-Tax CTLs did not recognize mismatched Tax301-309 peptides. These findings highlighted the importance of matching the viral antigen epitope type in T-cell-based immunotherapy against ATL by using viral antigen Tax.

2.
Nat Immunol ; 25(9): 1555-1564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179934

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , HIV-1 , Replicação Viral , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Replicação Viral/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Feminino , Terapia Antirretroviral de Alta Atividade , Antirretrovirais/uso terapêutico , Análise de Célula Única , Diferenciação Celular/imunologia
3.
Commun Med (Lond) ; 4(1): 161, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122992

RESUMO

BACKGROUND: Highly transmissible viruses including SARS-CoV-2 frequently accumulate novel mutations that are detected via high-throughput sequencing. However, there is a need to develop an alternative rapid and non-expensive approach. Here we developed a novel multiplex DNA detection method Intelli-OVI for analysing existing and novel mutations of SARS-CoV-2. METHODS: We have developed Intelli-OVI that includes the micro-disc-based method IntelliPlex and computational algorithms of objective variant identification (OVI). More than 250 SARS-CoV-2 positive samples including wastewater ones were analysed to verify the efficiency of the method. RESULTS: IntelliPlex uses micro-discs printed with a unique pictorial pattern as a labelling conjugate for DNA probes, and OVI allows simultaneous identification of several variants using multidimensional data obtained by the IntelliPlex method. Importantly, de novo mutations can be identified by decreased signals, which indicates that there is an emergence of de novo variant virus as well as prompts the need to design additional primers and probes. We have upgraded probe panel according to the emergence of new variants and demonstrated that Intelli-OVI efficiently identified more than 20 different SARS-CoV-2 variants by using 35 different probes simultaneously. CONCLUSIONS: Intelli-OVI can be upgraded to keep up with rapidly evolving viruses as we showed in this study using SARS-CoV-2 as an example and may be suitable for other viruses but would need to be validated.


As the COVID-19 pandemic progresses, it is increasingly becoming important to be able to detect emerging new variants of concerns of SARS-CoV-2, the virus that causes COVID-19, for accurate surveillance and timely interventions. We developed a rapid diagnostic method for detecting multiple SARS-CoV-2 variants and tested it using various starting materials such as sputum, nasopharyngeal swabs and wastewater. The method could accurately detect multiple subvariants of Omicron and showed potential for rapid adaptability to detect the virus as it evolves. This technology could enable continuous monitoring of emerging SARS-CoV-2 variants and the opportunity to intercept transmission with timely interventions to prevent viral spread.

4.
Commun Biol ; 7(1): 344, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509308

RESUMO

Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.


Assuntos
Infecções por HIV , Provírus , Humanos , Provírus/genética , Latência Viral/genética , Infecções por HIV/genética
5.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892225

RESUMO

Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL). HTLV-1 carriers have a lifelong asymptomatic balance between infected cells and host antiviral immunity; however, 5-10% of carriers lose this balance and develop ATL. Coinfection with Strongyloides promotes ATL development, suggesting that the immunological status of infected individuals is a determinant of HTLV-1 pathogenicity. As CD4+ T cells play a central role in host immunity, the deregulation of their function and differentiation via HTLV-1 promotes the immune evasion of infected T cells. During ATL development, the accumulation of genetic and epigenetic alterations in key host immunity-related genes further disturbs the immunological balance. Various approaches are available for treating these abnormalities; however, hematopoietic stem cell transplantation is currently the only treatment with the potential to cure ATL. The patient's immune state may contribute to the treatment outcome. Additionally, the activity of the anti-CC chemokine receptor 4 antibody, mogamulizumab, depends on immune function, including antibody-dependent cytotoxicity. In this comprehensive review, we summarize the immunopathogenesis of HTLV-1 infection in ATL and discuss the clinical findings that should be considered when developing treatment strategies for ATL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Linfócitos T CD4-Positivos
6.
J Virol ; 97(1): e0154222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533951

RESUMO

Bovine leukemia virus (BLV) infection results in polyclonal expansion of infected B lymphocytes, and ~5% of infected cattle develop enzootic bovine leukosis (EBL). Since BLV is a retrovirus, each individual clone can be identified by using viral integration sites. To investigate the distribution of tumor cells in EBL cattle, we performed viral integration site analysis by using a viral DNA capture-sequencing method. We found that the same tumor clones existed in peripheral blood, with a dominance similar to that in lymphoma tissue. Additionally, we observed that multiple tumor tissues from different sites harbored the identical clones, indicating that tumor cells can circulate and distribute systematically in EBL cattle. To investigate clonal expansion of BLV-infected cells during a long latent period, we collected peripheral blood samples from asymptomatic cattle every 2 years, among which several cattle developed EBL. We found that no detectable EBL clone existed before the diagnosis of EBL in some cases; in the other cases, clones that were later detected as malignant clones at the EBL stage were present several months or even years before the disease onset. To establish a feasible clonality-based method for the diagnosis of EBL, we simplified a quick and cost-effective method, namely, rapid amplification of integration sites for BLV infection (BLV-RAIS). We found that the clonality values (Cvs) were well correlated between the BLV-RAIS and viral DNA capture-sequencing methods. Furthermore, receiver operating characteristic (ROC) curve analysis identified an optimal Cv cutoff value of 0.4 for EBL diagnosis, with excellent diagnostic sensitivity (94%) and specificity (100%). These results indicated that the RAIS method efficiently and reliably detected expanded clones not only in lymphoma tissue but also in peripheral blood. Overall, our findings elucidated the clonal dynamics of BLV- infected cells during EBL development. In addition, Cvs of BLV-infected cells in blood can be used to establish a valid and noninvasive diagnostic test for potential EBL onset. IMPORTANCE Although BLV has been eradicated in some European countries, BLV is still endemic in other countries, including Japan and the United States. EBL causes huge economic damage to the cattle industry. However, there are no effective drugs or vaccines to control BLV infection and related diseases. The strategy of eradication of infected cattle is not practical due to the high endemicity of BLV. Furthermore, how BLV-infected B cell clones proliferate during oncogenesis and their distribution in EBL cattle have yet to be elucidated. Here, we provided evidence that tumor cells are circulating in the blood of diseased cattle. Thus, the Cv of virus-infected cells in blood is useful information for the evaluation of the disease status. The BLV-RAIS method provides quantitative and accurate clonality information and therefore is a promising method for the diagnosis of EBL.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/patologia , DNA Viral/genética , Linfócitos B/patologia , Vírus da Leucemia Bovina/genética , Células Clonais/patologia
7.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201474

RESUMO

The gut microbiota has emerged as a key regulator of immune checkpoint inhibitor (ICI) efficacy. Therapeutic approaches aimed at manipulating the microbiota through targeted reconstitution to enhance cancer treatment outcomes have garnered considerable attention. A single live microbial biotherapeutic bacterium, Clostridium butyricum MIYAIRI 588 strain (CBM588), has been shown to enhance the effects of ICI monotherapy in patients with advanced lung cancer. However, whether CBM588 affects the outcomes of chemoimmunotherapy combinations in lung cancer remains unknown. We hypothesized that CBM588 augments the effect of chemoimmunotherapy combinations and restores diminished effectiveness in patients with non-small cell lung cancer (NSCLC) receiving dysbiosis-inducing drugs. To validate this hypothesis, we retrospectively analyzed 106 patients with stage IV or recurrent metastatic NSCLC consecutively treated with chemoimmunotherapy combinations. A survival analysis was performed employing univariate and multivariate Cox proportional hazard models with inverse probability of treatment weighting (IPTW) using propensity scores. Forty-five percent of patients received Clostridium butyricum therapy. CBM588 significantly extended overall survival in patients with NSCLC receiving chemoimmunotherapy. The favorable impact of CBM588 on the efficacy of chemoimmunotherapy combinations varied based on tumor-programmed cell death ligand 1 (PD-L1) expression. The survival benefit of CBM588 in the PD-L1 <1% cohort was higher than that in the PD-L1 1-49% and PD-L1 ≥ 50% cohorts. Furthermore, CBM588 was associated with improved overall survival in patients receiving proton pump inhibitors and/or antibiotics. CBM588-induced manipulation of the commensal microbiota holds the potential to enhance the efficacy of chemoimmunotherapy combinations, warranting further exploration of the synergy between CBM588 and immunotherapy.

8.
Front Immunol ; 13: 991928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300109

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily transmitted via direct cell-to-cell transmission. This feature generates a wide variety of infected clones in hosts, which are maintained via clonal proliferation, resulting in the persistence and survival of the virus. The maintenance of the pool of infected cells is achieved by sculpting the immunophenotype of infected cells and modulating host immune responses to avoid immune surveillance. Here, we review the processes undertaken by HTLV-1 to modulate and subvert host immune responses which contributes to viral persistence and development of ATL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Humanos , Carcinogênese , Imunofenotipagem , Linfócitos T
9.
J Immunol ; 209(8): 1481-1491, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165170

RESUMO

The immunogenicity of a T cell Ag is correlated with the ability of its antigenic epitope to bind HLA and be stably presented to T cells. This presents a challenge for the development of effective cancer immunotherapies, as many self-derived tumor-associated epitopes elicit weak T cell responses, in part due to weak binding affinity to HLA. Traditional methods to increase peptide-HLA binding affinity involve modifying the peptide to reflect HLA allele binding preferences. Using a different approach, we sought to analyze whether the immunogenicity of wild-type peptides could be altered through modification of the HLA binding pocket. After analyzing HLA class I peptide binding pocket alignments, we identified an alanine 81 to leucine (A81L) modification within the F binding pocket of HLA-A*24:02 that was found to heighten the ability of artificial APCs to retain and present HLA-A*24:02-restricted peptides, resulting in increased T cell responses while retaining Ag specificity. This modification led to increased peptide exchange efficiencies for enhanced detection of low-avidity T cells and, when expressed on artificial APCs, resulted in greater expansion of Ag-specific T cells from melanoma-derived tumor-infiltrating lymphocytes. Our study provides an example of how modifications to the HLA binding pocket can enhance wild-type cognate peptide presentation to heighten T cell activation.


Assuntos
Epitopos de Linfócito T , Peptídeos , Alanina , Antígeno HLA-A2 , Antígeno HLA-A24 , Leucina , Linfócitos T
10.
Nat Commun ; 13(1): 2405, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504920

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes adult T-cell leukemia/lymphoma (ATL), a cancer of infected CD4+ T-cells. There is both sense and antisense transcription from the integrated provirus. Sense transcription tends to be suppressed, but antisense transcription is constitutively active. Various efforts have been made to elucidate the regulatory mechanism of HTLV-1 provirus for several decades; however, it remains unknown how HTLV-1 antisense transcription is maintained. Here, using proviral DNA-capture sequencing, we found a previously unidentified viral enhancer in the middle of the HTLV-1 provirus. The transcription factors, SRF and ELK-1, play a pivotal role in the activity of this enhancer. Aberrant transcription of genes in the proximity of integration sites was observed in freshly isolated ATL cells. This finding resolves certain long-standing questions concerning HTLV-1 persistence and pathogenesis. We anticipate that the DNA-capture-seq approach can be applied to analyze the regulatory mechanisms of other oncogenic viruses integrated into the host cellular genome.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , DNA , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Provírus/genética , Sequências Reguladoras de Ácido Nucleico
11.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34907908

RESUMO

Human T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces chronic, persistent infection in infected individuals, with some developing adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells. In this study, we used single-cell RNA-sequencing and T cell receptor-sequencing to investigate the differentiation and HTLV-1-mediated transformation of T cells. We analyzed 87,742 PBMCs from 12 infected and 3 uninfected individuals. Using multiple independent bioinformatics methods, we demonstrated the seamless transition of naive T cells into activated T cells, whereby HTLV-1-infected cells in an activated state further transformed into ATL cells, which are characterized as clonally expanded, highly activated T cells. Notably, the greater the activation state of ATL cells, the more they acquire Treg signatures. Intriguingly, the expression of HLA class II genes in HTLV-1-infected cells was uniquely induced by the viral protein Tax and further upregulated in ATL cells. Functional assays revealed that HTLV-1-infected cells upregulated HLA class II molecules and acted as tolerogenic antigen-presenting cells to induce anergy of antigen-specific T cells. In conclusion, our study revealed the in vivo mechanisms of HTLV-1-mediated transformation and immune escape at the single-cell level.


Assuntos
Transformação Celular Viral/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Feminino , Produtos do Gene tax/imunologia , Antígenos HLA/imunologia , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino
12.
Nat Biotechnol ; 39(8): 958-967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33649568

RESUMO

Peptide-major histocompatibility complex (pMHC) multimers enable the detection of antigen-specific T cells in studies ranging from vaccine efficacy to cancer immunotherapy. However, this technology is unreliable when applied to pMHC class II for the detection of CD4+ T cells. Here, using a combination of molecular biological and immunological techniques, we cloned sequences encoding human leukocyte antigen (HLA)-DP, HLA-DQ and HLA-DR molecules with enhanced CD4 binding affinity (with a Kd of 8.9 ± 1.1 µM between CD4 and affinity-matured HLA-DP4) and produced affinity-matured class II dimers that stain antigen-specific T cells better than conventional multimers in both in vitro and ex vivo analyses. Using a comprehensive library of dimers for HLA-DP4, which is the most frequent HLA allele in many ancestry groups, we mapped 103 HLA-DP4-restricted epitopes derived from diverse tumor-associated antigens and cloned the cognate T-cell antigen receptor (TCR) genes from in vitro-stimulated CD4+ T cells. The availability of affinity-matured class II dimers across HLA-DP, HLA-DQ and HLA-DR alleles will aid in the investigation of human CD4+ T-cell responses.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Coloração e Rotulagem/métodos , Antígenos CD4/química , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citometria de Fluxo , Antígenos HLA/química , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ligação Proteica
13.
PLoS Pathog ; 17(2): e1009271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524072

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression.


Assuntos
Células Clonais/virologia , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Linfócitos T/virologia , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Células Clonais/imunologia , Células Dendríticas/imunologia , Feminino , Produtos do Gene tax/imunologia , Infecções por HTLV-I/transmissão , Infecções por HTLV-I/virologia , Transplante de Células-Tronco Hematopoéticas , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Transplante de Fígado/efeitos adversos , Macaca fuscata , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Provírus , Linfócitos T/citologia , Carga Viral , Replicação Viral
14.
Cell Rep Methods ; 1(8): 100122, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35475215

RESUMO

Persistence of HIV-1 latent reservoir cells during antiretroviral therapy (ART) is a major obstacle for curing HIV-1. Even though latency-reversing agents (LRAs) are under development to reactivate and eradicate latently infected cells, there are few useful models for evaluating LRA activity in vitro. Here, we establish a long-term cell culture system called the "widely distributed intact provirus elimination" (WIPE) assay. It harbors thousands of different HIV-1-infected cell clones with a wide distribution of HIV-1 provirus similar to that observed in vivo. Mathematical modeling and experimental results from this in vitro infection model demonstrates that the addition of an LRA to ART shows a latency-reversing effect and contributes to the eradication of replication-competent HIV-1. The WIPE assay can be used to optimize therapeutics against HIV-1 latency and investigate mechanistic insights into the clonal selection of heterogeneous HIV-1-infected cells.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Provírus/genética , Ativação Viral , Latência Viral , HIV-1/genética , Infecções por HIV/tratamento farmacológico
15.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32314731

RESUMO

HLA-restricted T cell responses can induce antitumor effects in cancer patients. Previous human T cell research has largely focused on the few HLA alleles prevalent in a subset of ethnic groups. Here, using a panel of newly developed peptide-exchangeable peptide/HLA multimers and artificial antigen-presenting cells for 25 different class I alleles and greater than 800 peptides, we systematically and comprehensively mapped shared antigenic epitopes recognized by tumor-infiltrating T lymphocytes (TILs) from eight melanoma patients for all their class I alleles. We were able to determine the specificity, on average, of 12.2% of the TILs recognizing a mean of 3.1 shared antigen-derived epitopes across HLA-A, B, and C. Furthermore, we isolated a number of cognate T cell receptor genes with tumor reactivity. Our novel strategy allows for a more complete examination of the immune response and development of novel cancer immunotherapy not limited by HLA allele prevalence or tumor mutation burden.


The immune system is the body's way of defending itself, offering protection against diseases such as cancer. But to remove the cancer cells, the immune system must be able to identify them as different from the rest of the body. All cells break down proteins into shorter fragments, known as peptides, that are displayed on the cell surface by a protein called human leukocyte antigen, HLA for short. Cancer cells display distinctive peptides on their surface as they generate different proteins to those of healthy cells. Immune cells called T cells use these abnormal peptides to identify the cancer so that it can be destroyed. Sometimes T cells can lack the right equipment to detect abnormal peptides, allowing cancer cells to hide from the immune system. However, T cells can be trained through a treatment called immunotherapy, which provides T cells with new tools so that they can spot the peptides displayed by HLA on the previously 'hidden' cancer cells. There are many different forms of HLA, each of which can display different peptides. Current research in immunotherapy commonly targets only a subset of HLA forms, and not all cancer patients have these types. This means that immunotherapy research is only likely to be of most benefit to a limited number of patients. Immunotherapy could be made effective for more people if new cancer peptides that are displayed by the other 'under-represented' forms of HLA were identified. Murata, Nakatsugawa et al. have now used T cells that were taken from tumors in eight patients with melanoma, which is a type of skin cancer. A library of fluorescent HLA-peptides was generated ­ using a new, simplified methodology ­ with 25 forms of HLA that displayed over 800 peptides. T cells were then mixed with the library to identify which HLA-peptides they can target. As a result, Murata, Nakatsugawa et al. found the cancer targets of around 12% of the tumor-infiltrating T cells tested, including those from under-represented forms of HLA. Consequently, these findings could be used to develop new immunotherapies that can treat more patients.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia
16.
Cancer Immunol Res ; 8(7): 926-936, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321775

RESUMO

Adoptive immunotherapy can induce sustained therapeutic effects in some cancers. Antitumor T-cell grafts are often individually prepared in vitro from autologous T cells, which requires an intensive workload and increased costs. The quality of the generated T cells can also be variable, which affects the therapy's antitumor efficacy and toxicity. Standardized production of antitumor T-cell grafts from third-party donors will enable widespread use of this modality if allogeneic T-cell responses are effectively controlled. Here, we generated HLA class I, HLA class II, and T-cell receptor (TCR) triple-knockout (tKO) T cells by simultaneous knockout of the B2M, CIITA, and TRAC genes through Cas9/sgRNA ribonucleoprotein electroporation. Although HLA-deficient T cells were targeted by natural killer cells, they persisted better than HLA-sufficient T cells in the presence of allogeneic peripheral blood mononuclear cells (PBMC) in immunodeficient mice. When transduced with a CD19 chimeric antigen receptor (CAR) and stimulated by tumor cells, tKO CAR-T cells persisted better when cultured with allogeneic PBMCs compared with TRAC and B2M double-knockout T cells. The CD19 tKO CAR-T cells did not induce graft-versus-host disease but retained antitumor responses. These results demonstrated the benefit of HLA class I, HLA class II, and TCR deletion in enabling allogeneic-sourced T cells to be used for off-the-shelf adoptive immunotherapy.


Assuntos
Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Aloenxertos , Animais , Antígenos CD19/imunologia , Sistemas CRISPR-Cas , Células Cultivadas , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Leucócitos Mononucleares , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética
17.
J Autoimmun ; 102: 114-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078377

RESUMO

Recent work has delineated key differences in the antigen processing and presentation mechanisms underlying HLA-DP alleles encoding glycine at position 84 of the DPß chain (DP84GGPM87). These DPs are unable to associate with the class II-associated Ii peptide (CLIP) region of the invariant chain (Ii) chaperone early in the endocytic pathway, leading to continuous presentation of endogenous antigens. However, little is known about the chaperone support involved in the loading of these endogenous antigens onto DP molecules. Here, we demonstrate the proteasome and TAP dependency of this pathway and reveal the ability of HLA class I to compete with DP84GGPM87 for the presentation of endogenous antigens, suggesting that shared subcellular machinery may exist between the two classes of HLA. We identify physical interactions of prototypical class I-associated chaperones with numerous DP alleles, including TAP2, tapasin, ERp57, calnexin, and calreticulin, using a conventional immunoprecipitation and immunoblot approach and confirm the existence of these interactions in vivo through the use of the BioID2 proximal biotinylation system in human cells. Based on immunological assays, we then demonstrate the ability of each of these chaperones to facilitate the presentation of endogenously derived, but not exogenously derived, antigens on DP molecules. Considering previous genetic and clinical studies linking DP84GGPM87 to disease frequency and severity in autoimmune disease, viral infections, and cancer, we suggest that the above chaperones may form the molecular basis of these observable clinical differences through facilitating the presentation of endogenously derived antigens to CD4+ T cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos HLA-DP/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Chaperonas Moleculares/imunologia , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/imunologia , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Calnexina/genética , Calnexina/imunologia , Calreticulina/genética , Calreticulina/imunologia , Linhagem Celular , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/imunologia
18.
J Autoimmun ; 97: 10-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30318155

RESUMO

Forkhead box transcription factor 3 (FOXP3) plays a pivotal role in the suppressive function of regulatory T cells. In addition to mRNA levels, FOXP3 activity can also be controlled by posttranslational mechanisms, which have not been studied in a comprehensive manner. Through extensive screening using selective inhibitors, we demonstrate that the inhibition of type I protein arginine methytransferases (PRMTs) attenuates the suppressive functions of regulatory T cells. FOXP3 undergoes methylation on arginine residues at positions 48 and 51 by interacting with protein arginine methyltransferase 1 (PRMT1). The inhibition of arginine methylation confers gene expression profiles representing type I helper T cells to FOXP3+ T cells, which results in attenuated suppressive activity. A methylation-defective mutant of FOXP3 displays less potent activity to suppress xenogeneic graft-versus-host disease in vivo. These results elucidate an important role of arginine methylation to enhance FOXP3 functions and are potentially applicable to modulate regulatory T cell functions.


Assuntos
Arginina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Metilação , Camundongos , Mutação , Processamento de Proteína Pós-Traducional , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia
19.
PLoS Pathog ; 13(11): e1006722, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186194

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo.


Assuntos
Infecções por HTLV-I/virologia , Células-Tronco Hematopoéticas/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Animais , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Macaca mulatta , Neutrófilos/virologia
20.
Cancer Res ; 76(17): 5068-79, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402079

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and other inflammatory diseases in infected individuals. However, a complete understanding of how HTLV-1 transforms T cells is lacking. Expression of the chemokine receptor CCR4 on ATL cells and HTLV-1-infected cells suggested the hypothesis that CCR4 may mediate features of ATL and inflammatory diseases caused by HTLV-1. In this study, we show that the constitutively expressed HTLV-1 bZIP factor (HBZ) encoded by HTLV-1 is responsible for inducing CCR4 and its ability to promote T-cell proliferation and migration. Ectopic expression of HBZ was sufficient to stimulate expression of CCR4 in human and mouse T cells. Conversely, HBZ silencing in ATL cell lines was sufficient to inhibit CCR4 expression. Mechanistic investigations showed that HBZ induced GATA3 expression in CD4(+) T cells, thereby activating transcription from the CCR4 promoter. In an established air pouch model of ATL, we observed that CD4(+) T cells of HBZ transgenic mice (HBZ-Tg mice) migrated preferentially to the pouch, as compared with those in nontransgenic mice. Migration of CD4(+) T cells in HBZ-Tg mice was inhibited by treatment with a CCR4 antagonist. Proliferating (Ki67(+)) CD4(+) T cells were found to express high levels of CCR4 and CD103. Further, CD4(+) T-cell proliferation in HBZ-Tg mice was enhanced by coordinate treatment with the CCR4 ligands CCL17 and 22 and with the CD103 ligand E-cadherin. Consistent with this finding, we found that ATL cells in clinical skin lesions were frequently positive for CCR4, CD103, and Ki67. Taken together, our results show how HBZ activates CCR4 expression on T cells to augment their migration and proliferation, two phenomena linked to HTLV-1 pathogenesis. Cancer Res; 76(17); 5068-79. ©2016 AACR.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Receptores CCR4/metabolismo , Proteínas dos Retroviridae/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/fisiologia , Transformação Celular Viral , Quimiotaxia de Leucócito/fisiologia , Fator de Transcrição GATA3/metabolismo , Regulação Viral da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Imuno-Histoquímica , Leucemia-Linfoma de Células T do Adulto/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA