Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(1): e25581, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289187

RESUMO

The cerebellar projection from the trigeminal nuclear complex is one of the major populations of the cerebellar inputs. Although this projection is essential in cerebellar functional processing and organization, its morphological organization has not been systematically clarified. The present study addressed this issue by lobule-specific retrograde neuronal labeling and single axonal reconstruction with anterograde labeling. The cerebellar projection arose mainly from the interpolaris subdivision of the spinal trigeminal nucleus (Sp5I) and the principal trigeminal sensory nucleus (Pr5). Although crus II, paramedian lobule, lobule IX, and simple lobule were the major targets, paraflocculus, and other lobules received some projections. Reconstructed single trigeminocerebellar axons showed 77.8 mossy fiber terminals on average often in multiple lobules but no nuclear collaterals. More terminals were located in zebrin-negative or lightly-positive compartments than in zebrin-positive compartments. While Pr5 axons predominantly projected to ipsilateral crus II, Sp5I axons projected either predominantly to crus II and paramedian lobule often bilaterally, or predominantly to lobule IX always ipsilaterally. Lobule IX-predominant-type Sp5I neurons specifically expressed Gpr26. Gpr26-tagged neuronal labeling produced a peculiar mossy fiber distribution, which was dense in the dorsolateral lobule IX and extending transversely to the dorsal median apex in lobule IX. The projection to the cerebellar nuclei was observed in collaterals of ascending Sp5I axons that project to the diencephalon. In sum, multiple populations of trigeminocerebellar projections showed divergent projections to cerebellar lobules. The projection was generally complementary with the pontine projection and partly matched with the reported orofacial receptive field arrangement.


Assuntos
Axônios , Vermis Cerebelar , Animais , Camundongos , Neurônios , Cerebelo , Núcleos Cerebelares
2.
J Comp Neurol ; 531(16): 1633-1650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37585320

RESUMO

The parallel closed-loop topographic connections between subareas of the inferior olive (IO), cerebellar cortex, and cerebellar nuclei (CN) define the fundamental modular organization of the cerebellum. The cortical modules or zones are organized into longitudinal zebrin stripes which are extended across transverse cerebellar lobules. However, how cerebellar lobules, which are related to the cerebellar functional localization, are incorporated into the olivo-cortico-nuclear topographic organization has not been fully clarified. In the present study, we analyzed the lobular topography in the CN and IO by making 57 small bidirectional tracer injections in the lateral zebrin-positive stripes equivalent with C2, D1, and D2 zones in every hemispheric lobule in zebrin stripe-visualized mice. C2, D1, and D2 zones were connected to the lateral part of the posterior interpositus nucleus (lPIN), and caudal and rostral parts of the lateral nucleus (cLN, rLN), respectively, and from the rostral part of the medial accessory olive (rMAO), and ventral and dorsal lamellas of the PO (vPO, dPO), respectively, as reported. Within these areas, crus I was specifically connected to the ventral parts of the lPIN, cLN, and rLN, and from the rostrolateral part of the rMAO and the lateral parts of the vPO and dPO. The results indicated that the cerebellar modules have lobule-related subdivisions and that crus I is topographically distinct from other lobules. We speculate that crus I and crus I-connected subdivisions in the CN and IO are involved more in nonmotor functions than other neighboring areas in the mouse.


Assuntos
Núcleos Cerebelares , Núcleo Olivar , Camundongos , Animais , Vias Neurais , Córtex Cerebelar , Cerebelo
3.
Sci Rep ; 13(1): 7114, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130860

RESUMO

The olivocerebellar projection is organized into an intricate topographical connection from the inferior olive (IO) subdivisions to the longitudinally-striped compartments of cerebellar Purkinje Cells (PCs), to play an essential role in cerebellar coordination and learning. However, the central mechanisms for forming topography need to be clarified. IO neurons and PCs are generated during overlapping periods of a few days in embryonic development. Therefore, we examined whether their neurogenic timing is specifically involved in the olivocerebellar topographic projection relationship. First, we mapped neurogenic timing in the entire IO by using the neurogenic-tagging system of neurog2-CreER (G2A) mice and specific labeling of IO neurons with FoxP2. IO subdivisions were classified into three groups depending on their neurogenic timing range. Then, we examined the relationships in the neurogenic-timing gradient between IO neurons and PCs by labeling topographic olivocerebellar projection patterns and PC neurogenic timing. Early, intermediate, and late groups of IO subdivisions projected to late, intermediate, and early groups of the cortical compartments, respectively, except for a few particular areas. The results indicated that the olivocerebellar topographic relationship is essentially arranged according to the reverse neurogenic-timing gradients of the origin and target.


Assuntos
Cerebelo , Núcleo Olivar , Feminino , Gravidez , Camundongos , Animais , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Núcleos Cerebelares , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
4.
Heliyon ; 9(4): e14352, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025843

RESUMO

The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.

5.
Nat Commun ; 13(1): 580, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102165

RESUMO

The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.


Assuntos
Adaptação Psicológica/fisiologia , Comportamento Animal/fisiologia , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Atividade Motora/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia
6.
iScience ; 25(1): 103705, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059609

RESUMO

In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.

7.
J Comp Neurol ; 529(18): 3893-3921, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34333770

RESUMO

Among the spinocerebellar projections vital for sensorimotor coordination of limbs and the trunk, the morphology of spinocerebellar axons originating from the lumbar cord has not been well characterized compared to those from thoracic and sacral cords. We reconstructed 26 single spinocerebellar axons labeled by biotinylated dextran injections into the gray matter of the lumbar spinal cord in mice. Axon terminals were mapped with the zebrin pattern of the cerebellar cortex. Reconstructed axons were primarily classified into ipsilaterally and contralaterally ascending axons, arising mainly from the dorsal and ventral horns, respectively. The majority of ipsilateral and contralateral axons took the dorsal-medullary and ventral-pontine pathways, respectively. The axons of both groups terminated mainly in the vermal and medial paravermal areas of lobules II-V and VIII-IXa, often bilaterally but predominantly ipsilateral to the axonal origin, with a weak preference to particular portions of zebrin stripes. The ipsilateral axons originating from the medial dorsal horn in the upper lumbar cord (n = 3) had abundant (43-147) mossy fiber terminals and no medullary collaterals. The ipsilateral axons originating from the lateral dorsal horn in the lower lumbar cord (n = 9) and the contralateral axons (n = 14) showed remarkable morphology variations. The number of their mossy fiber terminals varied from 2 to 172. Their collaterals, observed in 17 axons out of 23, terminated mainly in the medial cerebellar nucleus, nucleus X, and lateral reticular nucleus in various degrees. The results indicated that the lumbar spinocerebellar projection contains highly heterogeneous axonal populations regarding their pathway, branching, and termination patterns.


Assuntos
Axônios/fisiologia , Região Lombossacral/fisiologia , Medula Espinal , Tratos Espinocerebelares , Animais , Núcleos Cerebelares , Substância Cinzenta , Camundongos , Vias Neurais/fisiologia
8.
J Neurosci ; 41(39): 8126-8133, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34400517

RESUMO

Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared with regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non-cell-autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENT Excitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.


Assuntos
Cerebelo/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Transportador 4 de Aminoácido Excitatório/genética , Camundongos , Células de Purkinje/metabolismo , Sinapses/metabolismo
9.
Neuroscience ; 462: 122-140, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717297

RESUMO

Heterogeneity of Purkinje cells (PCs) that are arranged into discrete longitudinally-striped compartments in the cerebellar cortex is related to the timing of PC generation. To understand the cerebellar compartmental organization, we mapped the PC birthdate (or differentiation timing) in the entire cerebellar cortex. We used the birthdate-tagging system of Neurog2-CreER (G2A) mice hybridized with the AldocV strain which visualizes the zebrin (aldolase C) longitudinal striped pattern. The birthdate-specific distribution pattern of PCs was arranged into longitudinally-oriented stripes consistently throughout almost all lobules except for the nodulus, paraflocculus, and flocculus, in which distinct stripes were observed. Boundaries of the birthdate stripes coincided with the boundary of zebrin stripes or located in the middle of a zebrin stripe. Each birthdate stripe contained PCs born in a particular period between embryonic day (E) 10.0 and E 13.5. In the vermis, PCs were chronologically distributed from lateral to medial stripes. In the paravermis, PCs of early birthdates were distributed in the long lateral zebrin-positive stripe (stripe 4+//5+) and the medially neighboring narrow zebrin-negative substripe (3d-//e2-), while PCs of late birthdates were distributed in the rest of all paravermal areas. In the hemisphere, PCs of early and late birthdates were intermingled in the majority of areas. The results indicate that the birthdate of a PC is a partial determinant for the zebrin compartment in which it is located. However, the correlation between the PC birthdate and the zebrin compartmentalization is complex and distinct among the vermis, paravermis, hemisphere, nodulus, and flocculus.


Assuntos
Vermis Cerebelar , Células de Purkinje , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córtex Cerebelar/metabolismo , Cerebelo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
10.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33055198

RESUMO

One of the notable characteristics of the functional localization in the cerebellar cortex is the dual representation of the body (somatotopy) on its anterior-posterior axis. This somatotopy is conspicuous in the C1/C3 module, which is demarcated as the multiple zebrin-negative and weekly-positive stripes in dual paravermal areas in anterior and posterior lobules within the cerebellar compartments. In this report, we describe the early formation process of the cerebellar compartmentalization, particularly in the C1/C3 module. As developing PCs guide formation of the module-specific proper neuronal circuits in the cerebellum, we hypothesized that the rearrangement of embryonic Purkinje cell (PC) clusters shapes the adult cerebellar compartmentalization. By identifying PC clusters with immunostaining of marker molecules and genetical birthdate-tagging with Neurog2-CreER (G2A) mice, we clarified the three-dimensional spatial organization of the PC clusters and tracked the lineage relationships among the PC clusters from embryonic day 14.5 (E14.5) till E17.5. The number of recognized clusters increased from 9 at E14.5 to 37 at E17.5. Among E14.5 PC clusters, the c-l (central-lateral) cluster which lacked E10.5-born PCs divided into six c-l lineage clusters. They separately migrated underneath other clusters and positioned far apart mediolaterally as well as rostrocaudally by E17.5. They were eventually transformed mainly into multiple separate zebrin-negative and weakly-positive stripes, which together configured the adult C1/C3 module, in the anterior and posterior paravermal lobules. The results indicate that the spatial rearrangement of embryonic PC clusters is involved in forming the dual somatotopic areas in the adult mouse paravermal cerebellar cortex.


Assuntos
Cerebelo , Células de Purkinje , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cerebelo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo
11.
Commun Biol ; 3(1): 381, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669638

RESUMO

The cerebellum receives signals directly from peripheral sensory systems and indirectly from the neocortex. Even a single tactile stimulus can activate both of these pathways. Here we report how these different types of signals are integrated in the cerebellar cortex. We used in vivo whole-cell recordings from granule cells and unit recordings from Purkinje cells in mice in which primary somatosensory cortex (S1) could be optogenetically inhibited. Tactile stimulation of the upper lip produced two-phase granule cell responses (with latencies of ~8 ms and 29 ms), for which only the late phase was S1 dependent. In Purkinje cells, complex spikes and the late phase of simple spikes were S1 dependent. These results indicate that individual granule cells combine convergent inputs from the periphery and neocortex and send their outputs to Purkinje cells, which then integrate those signals with climbing fiber signals from the neocortex.


Assuntos
Cerebelo/fisiologia , Vias Neurais/fisiologia , Células de Purkinje/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebelar/fisiologia , Cerebelo/citologia , Feminino , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Sinapses/fisiologia
12.
Brain Struct Funct ; 225(2): 621-638, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31955293

RESUMO

The cerebellar cortex has dual somatotopic representation, broadly in the anterior lobules and narrowly in the posterior lobules. However, the somatotopy has not been well understood in vermal lobule VIII, located in the center of the posterior representation. Here, we examined the axonal projections and somatosensory representation of the midline area of vermal lobule VIII in mice, using the striped zebrin expression pattern as a landmark of intra-lobular compartmentalization. Retrograde tracer injection into this area (zebrin stripes 1+ and 1- in lobule VIII) labeled neuronal clusters, bilaterally, in the pericanal gray matter (Stilling's nucleus) in the sacral spinal cord. Spinocerebellar axons labeled by biotinylated dextran amine injection into the sacral pericanal gray matter terminated bilaterally in stripes 1+ and 1- in lobule VIII, with more than 70 terminals per axon, and the vermal stripes in lobules II-III. Dorsal flexion of the tail and electrical stimulation of the sacral spinal gray matter elicited the firing of mossy fiber terminals in stripes 1+ and 1- in lobule VIII. Anterograde labeling of Purkinje cell axons in this area showed terminals in the medial pole of the medial cerebellar nucleus. Lesioning of this area impaired locomotor performance in the rotarod test. These results demonstrated that stripes 1+ and 1- in lobule VIII receive tail proprioceptive sensation from the Stilling's nucleus as their predominant mossy fiber input. The results also suggest that locomotion-related activity is represented not only in the anterior lobule, but also in lobule VIII in the cerebellar vermis.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Propriocepção/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Cauda , Animais , Axônios , Comportamento Animal , Feminino , Substância Cinzenta/citologia , Substância Cinzenta/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod
13.
J Comp Neurol ; 528(10): 1725-1741, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31891184

RESUMO

The paraflocculus and the neighboring smaller flocculus form a remarkable protrusion in the ventrolateral aspect of the mouse cerebellum, in which the longitudinal compartments are conspicuously oriented perpendicularly to the sagittal plane. The developmental process of such anatomical arrangements in these lobules has not been fully clarified. Here, we used the genetic tractability of pcdh10-lacZ knock-in (OL-KO), IP 3 R1-nls-lacZ transgenic (1NM13) and Gpr26cre-Ai9-AldocV mice to track the development of compartments and examined local longitudinal orientation of Purkinje cells within the paraflocculus and flocculus. We observed a distinct pcdh10-positive (pcdh10+) compartment in the flocculus, whereas the paraflocculus and other lobules had a continuous paravermal pcdh10+ compartment, in the embryonic OL-KO cerebellum. During the first postnatal week, the parafloccular pcdh10+ compartment shifted laterally to the most lateral edge in the caudal part of the protruding paraflocculus. Although the most medial edge of the parafloccular pcdh10+ compartment remained in the nonprotruding part of the paraflocculus, it was disrupted from the originally continuous pcdh10+ compartment in the copula pyramidis. The local longitudinal orientation changed gradually along with the mediolateral extent of the copula pyramidis, almost becoming perpendicular to the sagittal plane in the laterally connected paraflocculus in the adult cerebellum. This rotational change in orientation was derived from the short U-shaped embryonic cerebellum, in which the surfaces of the flocculus and paraflocculus were oriented laterally. These results indicated that the peculiar compartmental organization of the paraflocculus originates from the embryonic common hemispheric compartmental organization and shaped by the significant reorganization process in the first postnatal week.


Assuntos
Cerebelo/anatomia & histologia , Cerebelo/crescimento & desenvolvimento , Vias Neurais/anatomia & histologia , Vias Neurais/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Transgênicos
14.
J Comp Neurol ; 528(10): 1775-1802, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31904871

RESUMO

A significant population of neurons in the vestibular nuclei projects to the cerebellum as mossy fibers (MFs) which are involved in the control and adaptation of posture, eye-head movements, and autonomic function. However, little is known about their axonal projection patterns. We studied the morphology of single axons of medial vestibular nucleus (MVN) neurons as well as those originating from primary afferents, by labeling with biotinylated dextran amine (BDA). MVN axons (n = 35) were classified into three types based on their major predominant termination patterns. The Cbm-type terminated only in the cerebellum (15 axons), whereas others terminated in the cerebellum and contralateral vestibular nuclei (cVN/Cbm-type, 13 axons), or in the cerebellum and ipsilateral vestibular nuclei (iVN/Cbm-type, 7 axons). Cbm- and cVN/Cbm-types mostly projected to the nodulus and uvula without any clear relationship with longitudinal stripes in these lobules. They were often bilateral, and sometimes sent branches to the flocculus and to other vermal lobules. Also, the iVN/Cbm-type projected mainly to the ipsilateral nodulus. Neurons of these types of axons showed different distribution within the MVN. The number of MF terminals of some vestibulocerebellar axons, iVN/Cbm-type axons in particular, and primary afferent axons were much smaller than observed in previously studied MF axons originating from major precerebellar nuclei and the spinal cord. The results demonstrated that a heterogeneous population of MVN neurons provided divergent MF inputs to the cerebellum. The cVN/Cbm- and iVN/Cbm-types indicate that some excitatory neuronal circuits within the vestibular nuclei supply their collaterals to the vestibulocerebellum as MFs.


Assuntos
Axônios/ultraestrutura , Cerebelo/citologia , Fibras Nervosas/ultraestrutura , Vias Neurais/citologia , Núcleos Vestibulares/citologia , Animais , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Camundongos
15.
J Comp Neurol ; 527(15): 2488-2511, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30887503

RESUMO

The mammalian cerebellar cortex is compartmentalized, both anatomically and histochemically, into multiple parasagittal bands. To characterize the multiple zonal patterns of pontocerebellar mossy fiber projection, single neurons in the basilar pontine nucleus (BPN) were labeled by injecting biotinylated dextran amine into the BPN, and the entire axonal trajectory of single labeled neurons (n = 25) was reconstructed in relation to aldolase C compartments of Purkinje cells in rats. Single pontocerebellar axons, after passing through the contralateral middle cerebellar peduncle, ran transversely in the deep cerebellar white matter toward and often across the midline, and on their ways, gave rise to 2-10 primary collaterals at almost right angles in specific lobules only contralaterally or bilaterally with contralateral predominance. Each primary collateral further branched in a parasagittal plane to form a strip-shaped longitudinal termination zone with rosette-type swellings clustered in aldolase C-positive compartments in a single or multiple lobules, mainly in compartment 4+//5+, 5+//6+, and 6+//7+. Axons arising from the central, rostral, and lateral part of the BPN projected with multiple branches, mainly to simple lobule, crus II and paramedian lobule, to crus I and dorsal paraflocculus, and to ventral paraflocculus and lobule IXc, respectively. The results showed the pontocerebellar projection is closely related to lobular and compartmental organization of the cerebellum. A comparison of single axon morphologies of different mossy fiber systems indicates that the projection pattern of single pontocerebellar neurons with multiple collaterals innervating different longitudinal compartments arranged in a mediolateral direction represents a general feature of mossy fiber projection.


Assuntos
Axônios/ultraestrutura , Córtex Cerebelar/citologia , Frutose-Bifosfato Aldolase/metabolismo , Vias Neurais/citologia , Animais , Axônios/metabolismo , Córtex Cerebelar/metabolismo , Feminino , Masculino , Vias Neurais/metabolismo , Ratos , Ratos Long-Evans
16.
J Comp Neurol ; 527(12): 1966-1985, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737986

RESUMO

The basilar pontine nucleus (PN) is the key relay point for the cerebrocerebellar link. However, the projection pattern of pontocerebellar mossy fiber axons, which is essential in determining the functional organization of the cerebellar cortex, has not been fully clarified. We reconstructed the entire trajectory of 25 single pontocerebellar mossy fiber axons labeled by localized injection of biotinylated dextran amine into various locations in the PN and mapped all their terminals in an unfolded scheme of the cerebellum in 10 mice. The majority of axons (20/25 axons) entered the cerebellum through the middle cerebellar peduncle contralateral to the origin, while others entered through the ipsilateral pathway. A small number of axons (1/25 axons) had collaterals terminating in the cerebellar nuclei. Axons projected mostly to a combination of lobules, often bilaterally, and terminated in multiple zebrin (aldolase C) stripes, more frequently in zebrin-positive stripes (83.9%) than in zebrin-negative stripes, with 66.5 mossy fiber terminals on the average. Axons originating from the rostral (plus medial and lateral), central and caudal PN mainly terminated in the paraflocculus, crus I and lobule VIb-c, in the simplex lobule, crus II and paramedian lobule, and in lobules II-VIa, VIII and copula pyramidis, respectively. The results suggest that the interlobular branching pattern of pontocerebellar axons determines the group of cerebellar lobules that are involved in a related functional localization of the cerebellum. In the hemisphere, crus I may be functionally distinct from neighboring lobules (simple lobule and crus II) in the mouse cerebellum based on the pontocerebellar axonal projection pattern.


Assuntos
Axônios/ultraestrutura , Cerebelo/citologia , Vias Neurais/citologia , Ponte/citologia , Animais , Feminino , Masculino , Camundongos
17.
J Comp Neurol ; 526(15): 2406-2427, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004589

RESUMO

Topographic connection between corresponding compartments of the cerebellar cortex, cerebellar nuclei, and inferior olive form parallel modules, which are essential for the cerebellar function. Compared to the striped cortical compartmentalization which are labeled by molecular markers, such as aldolase C (Aldoc) or zebrin II, the presumed corresponding organization of the cerebellar nuclei and inferior olivary nucleus has not been much clarified. We focused on the expression pattern of pcdh10 gene coding cell adhesion molecule protocadherin 10 (Pcdh10) in adult mice. In the cortex, pcdh10 was strongly expressed in (a) Aldoc-positive vermal stripes a+//2+ in lobules VI-VII, (b) paravermal narrow stripes c+, d+, 4b+, 5a+ in crus I and neighboring lobules, and (c) paravermal stripes 4+//5+ across all lobules from lobule III to paraflocculus. In the cerebellar nuclei, pcdh10 was expressed strongly in the caudal part of the medial nucleus and the lateral part of the posterior interposed nucleus which project less to the medulla or to the red nucleus than to other metencephalic, mesencephalic, and diencephalic areas. In the inferior olive, pcdh10 was expressed strongly in the rostral and medioventrocaudal parts of the medial accessory olive which has connection with the mesencephalic areas rather than the spinal cord. Olivocerebellar and corticonuclear axonal labeling confirmed that the three cortical pcdh10-positive areas were topographically connected to the nuclear and olivary pcdh10-positive areas, demonstrating their coincidence with modular structures in the olivo-cortico-nuclear loop. We speculate that some of these modules are functionally involved in various nonsomatosensorimotor tasks via their afferent and efferent connections.


Assuntos
Caderinas/metabolismo , Núcleos Cerebelares/metabolismo , Córtex Cerebral/metabolismo , Núcleo Olivar/metabolismo , Animais , Caderinas/genética , Córtex Cerebelar/anatomia & histologia , Córtex Cerebelar/metabolismo , Núcleos Cerebelares/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Núcleo Olivar/anatomia & histologia , Fenótipo , Protocaderinas , Células de Purkinje/fisiologia
18.
Cerebellum ; 17(5): 654-682, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29876802

RESUMO

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.


Assuntos
Cerebelo/anatomia & histologia , Cerebelo/fisiologia , Animais , Humanos
19.
Cerebellum ; 17(5): 683-684, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29931663

RESUMO

In the original version of this paper, the Title should have been written with "A Consensus paper" to read "Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper".

20.
Front Cell Neurosci ; 12: 513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670950

RESUMO

Heterogeneous populations of cerebellar Purkinje cells (PCs) are arranged into separate longitudinal stripes, which have different topographic afferent and efferent axonal connections presumably involved in different functions, and also show different electrophysiological properties in firing pattern and synaptic plasticity. However, whether the differences in molecular expression that define heterogeneous PC populations affect their electrophysiological properties has not been much clarified. Since the expression pattern of many of such molecules, including glutamate transporter EAAT4, replicates that of aldolase C or zebrin II, we recorded from PCs of different "zebrin types" (zebrin-positive = aldolase C-positive = Z+; and Z-) in identified neighboring stripes in vermal lobule VIII, in which Z+ and Z- stripes occupy similar widths, in the Aldoc-Venus mouse cerebellar slice preparation. Regarding basic cellular electrophysiological properties, no significant differences were observed in input resistance or in occurrence probability of types of firing patterns between Z+ and Z- PCs. However, the firing frequency of the tonic firing type was higher in Z- PCs than in Z+ PCs. In the case of parallel fiber (PF)-PC synaptic transmission, no significant differences were observed between Z+ and Z- PCs in interval dependency of paired pulse facilitation or in time course of synaptic current measured without or with the blocker of glutamate receptor desensitization. These results indicate that different expression levels of the molecules that are associated with the zebrin type may affect the intrinsic firing property of PCs but not directly affect the basic electrophysiological properties of PF-PC synaptic transmission significantly in lobule VIII. The results suggest that the zebrin types of PCs in lobule VIII is linked with some intrinsic electrophysiological neuronal characteristics which affect the firing frequency of PCs. However, the results also suggest that the molecular expression differences linked with zebrin types of PCs does not much affect basic electrophysiological properties of PF-PC synaptic transmission in a physiological condition in lobule VIII.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...