Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 137(1): 143-155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833503

RESUMO

Arrangement of plant leaves around the stem, termed phyllotaxis, exhibits beautiful and mysterious regularities and has been one of the most attractive subjects of biological pattern formation. After the long history of studies on phyllotaxis, it is now widely accepted that the inhibitory effect of existing leaf primordia on new primordium formation determines phyllotactic patterning. However, costoid phyllotaxis unique to Costaceae of Zingiberales, displaying spiromonostichy characterized by a steep spiral with a small divergence angle, seems to disagree with the inhibitory effect-based mechanism and has remained as a "genuine puzzle". We developed a new mathematical model, hypothesizing that each leaf primordium exerts not only the inhibitory effect but also some inductive effect. Computer simulations with the new model successfully generated a spiromonostichous pattern when these two effects met a certain relationship. The obtained spiromonostichy matched the real costoid phyllotaxis observed with Costus megalobractea, particularly for the decrease of the divergence angle associated with the enlargement of the shoot apical meristem. The new model was also shown to be able to produce a one-sided distichous pattern that is seen in phyllotaxis of a few plants of Zingiberales and has never been addressed in the previous model studies. These results implicated inductive as well as inhibitory mechanisms in phyllotactic patterning, at least in Zingiberales.


Assuntos
Meristema , Folhas de Planta , Humanos , Plantas , Modelos Biológicos
2.
Plants (Basel) ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896084

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.

3.
Plant Biotechnol (Tokyo) ; 40(1): 21-30, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38213914

RESUMO

Perturbations in ribosome biogenesis cause a type of cellular stress called nucleolar or ribosomal stress, which triggers adaptive responses in both animal and plant cells. The Arabidopsis ANAC082 transcription factor has been identified as a key mediator of the plant nucleolar stress response. The 5'-untranslated region (5'-UTR) of ANAC082 mRNA contains an upstream ORF (uORF) encoding an evolutionarily conserved amino acid sequence. Here, we report that this uORF mediates the upregulation of ANAC082 expression in response to nucleolar stress. When transgenic Arabidopsis plants containing a luciferase reporter gene under the control of the ANAC082 promoter and 5'-UTR were treated with reagents that induced nucleolar stress, expression of the reporter gene was enhanced in a uORF sequence-dependent manner. Additionally, we examined the effect of an endoplasmic reticulum (ER) stress-inducing reagent on reporter gene expression because the closest homolog of ANAC082 in Arabidopsis, ANAC103, is involved in the ER stress response. However, the ANAC082 uORF did not respond to ER stress. Interestingly, although ANAC103 has a uORF with an amino acid sequence similar to that of the ANAC082 uORF, the C-terminal sequence critical for regulation is not well conserved among ANAC103 homologs in Brassicaceae. Transient expression assays revealed that unlike the ANAC082 uORF, the ANAC103 uORF does not exert a sequence-dependent repressive effect. Altogether, our findings suggest that the ANAC082 uORF is important for the nucleolar stress response but not for the ER stress response, and that for this reason, the uORF sequence-dependent regulation was lost in ANAC103 during evolution.

4.
Plant Biotechnol (Tokyo) ; 39(3): 329-333, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36349236

RESUMO

During organ regeneration, differentiated cells acquire cell proliferation competence before the re-start of cell division. In Arabidopsis thaliana (Arabidopsis), CDKA;1, a cyclin-dependent kinase, RID1, a DEAH-box RNA helicase, and SRD2, a small nuclear RNA transcription factor, are implicated in the regulation of cell proliferation competence. Here, we report phytohormonal transcriptional regulation of these cell proliferation competence-associated genes during callus initiation. We can induce the callus initiation from Arabidopsis hypocotyl explants by the culture on the auxin-containing medium. By RT-quantitative PCR analysis, we observed higher mRNA accumulation of CDKA;1, RID1, and SRD2 in culture on the auxin-containing medium than in culture on the auxin-free medium. Promoter-reporter analysis showed that the CDKA;1, RID1, and SRD2 expression was induced in the stele regions containing pericycle cells, where cell division would be resumed to make callus, by the culture in the medium containing auxin and/or cytokinin. However, the expression levels of these genes in cortical and epidermal cells, which would not originate callus cells, were variable by genes and phytohormonal conditions. We also found that the rid1-1 mutation greatly decreased the expression levels of CDKA;1 and SRD2 during callus initiation specifically at 28°C (restrictive temperature), while the srd2-1 mutation did not obviously decrease the expression levels of CDKA;1 and RID1 regardless of temperature conditions but rather even increased them at 22°C (permissive temperature). Together, our results implicated the phytohormonal and differential regulation of cell proliferation competence-associated genes in the multistep regulation of cell proliferation competence.

5.
Plant Biotechnol (Tokyo) ; 39(1): 43-50, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35800968

RESUMO

In two-step culture systems for efficient shoot regeneration, explants are first cultured on auxin-rich callus-inducing medium (CIM), where cells are activated to proliferate and form calli containing root-apical meristem (RAM)-type stem cells and stem cell niche, and then cultured on cytokinin-rich shoot-inducing medium (SIM), where stem cells and stem cell niche of the shoot apical meristem (SAM) are established eventually leading to shoot regeneration. In the present study, we examined the effects of inhibitors of auxin biosynthesis and polar transport in the two-step shoot regeneration culture of Arabidopsis and found that, when they were applied during CIM culture, although callus growth was repressed, shoot regeneration in the subsequent SIM culture was significantly increased. The regeneration-stimulating effect of the auxin biosynthesis inhibitor was not linked with the reduction in the endogenous indole-3-acetic acid (IAA) level. Expression of the auxin-responsive reporter indicated that auxin response was more uniform and even stronger in the explants cultured on CIM with the inhibitors than in the control explants. These results suggested that the shoot regeneration competence of calli was enhanced somehow by the perturbation of the endogenous auxin dynamics, which we discuss in terms of the transformability between RAM and SAM stem cell niches.

6.
Plant Cell Physiol ; 62(8): 1335-1354, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34223624

RESUMO

Shoot regeneration involves reprogramming of somatic cells and de novo organization of shoot apical meristems (SAMs). In the best-studied model system of shoot regeneration using Arabidopsis, regeneration is mediated by the auxin-responsive pluripotent callus formation from pericycle or pericycle-like tissues according to the lateral root development pathway. In contrast, shoot regeneration can be induced directly from fully differentiated epidermal cells of stem explants of Torenia fournieri (Torenia), without intervening the callus mass formation in culture with cytokinin; yet, its molecular mechanisms remain unaddressed. Here, we characterized this direct shoot regeneration by cytological observation and transcriptome analyses. The results showed that the gene expression profile rapidly changes upon culture to acquire a mixed signature of multiple organs/tissues, possibly associated with epidermal reprogramming. Comparison of transcriptomes between three different callus-inducing cultures (callus induction by auxin, callus induction by wounding and protoplast culture) of Arabidopsis and the Torenia stem culture identified genes upregulated in all the four culture systems as candidates of common factors of cell reprogramming. These initial changes proceeded independently of cytokinin, followed by cytokinin-dependent, transcriptional activations of nucleolar development and cell cycle. Later, SAM regulatory genes became highly expressed, leading to SAM organization in the foci of proliferating cells in the epidermal layer. Our findings revealed three distinct phases with different transcriptomic and regulatory features during direct shoot regeneration from the epidermis in Torenia, which provides a basis for further investigation of shoot regeneration in this unique culture system.


Assuntos
Diferenciação Celular/genética , Meristema/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/genética , Brotos de Planta/crescimento & desenvolvimento , Scrophulariaceae/crescimento & desenvolvimento , Scrophulariaceae/genética , Perfilação da Expressão Gênica , Meristema/genética , Brotos de Planta/genética
7.
J Plant Res ; 134(3): 417-430, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33913052

RESUMO

Symmetry is an important component of geometric beauty and regularity in both natural and cultural scenes. Plants also display various geometric patterns with some kinds of symmetry, of which the most notable example is the arrangement of leaves around the stem, i.e., phyllotaxis. In phyllotaxis, reflection symmetry, rotation symmetry, translation symmetry, corkscrew symmetry, and/or glide reflection symmetry can be seen. These phyllotactic symmetries can be dealt with the group theory. In this review, we introduce classification of phyllotactic symmetries according to the group theory and enumerate all types of phyllotaxis, not only major ones such as spiral and decussate but also minor ones such as orixate and semi-decussate, with their symmetry groups. Next, based on the mathematical model studies of phyllotactic pattern formation, we discuss transitions between phyllotaxis types different in the symmetry class with a focus on the transition into one of the least symmetric phyllotaxis, orixate, as a representative of the symmetry-breaking process. By changes of parameters of the mathematical model, the phyllotactic pattern generated can suddenly switch its symmetry class, which is not constrained by the group-subgroup relationship of symmetry. The symmetry-breaking path to orixate phyllotaxis is also accompanied by dynamic changes of the symmetry class. The viewpoint of symmetry brings a better understanding of the variety of phyllotaxis and its transition.


Assuntos
Modelos Biológicos , Plantas , Modelos Teóricos , Folhas de Planta
8.
Elife ; 102021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33443014

RESUMO

Although mechanisms that activate organogenesis in plants are well established, much less is known about the subsequent fine-tuning of cell proliferation, which is crucial for creating properly structured and sized organs. Here we show, through analysis of temperature-dependent fasciation (TDF) mutants of Arabidopsis, root redifferentiation defective 1 (rrd1), rrd2, and root initiation defective 4 (rid4), that mitochondrial RNA processing is required for limiting cell division during early lateral root (LR) organogenesis. These mutants formed abnormally broadened (i.e. fasciated) LRs under high-temperature conditions due to extra cell division. All TDF proteins localized to mitochondria, where they were found to participate in RNA processing: RRD1 in mRNA deadenylation, and RRD2 and RID4 in mRNA editing. Further analysis suggested that LR fasciation in the TDF mutants is triggered by reactive oxygen species generation caused by defective mitochondrial respiration. Our findings provide novel clues for the physiological significance of mitochondrial activities in plant organogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Mutação , Raízes de Plantas/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/metabolismo , Proteínas de Arabidopsis/metabolismo , Organogênese Vegetal , Temperatura
9.
PLoS Comput Biol ; 15(6): e1007044, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170142

RESUMO

Plant leaves are arranged around the stem in a beautiful geometry that is called phyllotaxis. In the majority of plants, phyllotaxis exhibits a distichous, Fibonacci spiral, decussate, or tricussate pattern. To explain the regularity and limited variety of phyllotactic patterns, many theoretical models have been proposed, mostly based on the notion that a repulsive interaction between leaf primordia determines the position of primordium initiation. Among them, particularly notable are the two models of Douady and Couder (alternate-specific form, DC1; more generalized form, DC2), the key assumptions of which are that each leaf primordium emits a constant power that inhibits new primordium formation and that this inhibitory effect decreases with distance. It was previously demonstrated by computer simulations that any major type of phyllotaxis can occur as a self-organizing stable pattern in the framework of DC models. However, several phyllotactic types remain unaddressed. An interesting example is orixate phyllotaxis, which has a tetrastichous alternate pattern with periodic repetition of a sequence of different divergence angles: 180°, 90°, -180°, and -90°. Although the term orixate phyllotaxis was derived from Orixa japonica, this type is observed in several distant taxa, suggesting that it may reflect some aspects of a common mechanism of phyllotactic patterning. Here we examined DC models regarding the ability to produce orixate phyllotaxis and found that model expansion via the introduction of primordial age-dependent changes of the inhibitory power is absolutely necessary for the establishment of orixate phyllotaxis. The orixate patterns generated by the expanded version of DC2 (EDC2) were shown to share morphological details with real orixate phyllotaxis. Furthermore, the simulation results obtained using EDC2 fitted better the natural distribution of phyllotactic patterns than did those obtained using the previous models. Our findings imply that changing the inhibitory power is generally an important component of the phyllotactic patterning mechanism.


Assuntos
Simulação por Computador , Modelos Biológicos , Folhas de Planta , Caules de Planta , Rutaceae , Biologia Computacional , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Rutaceae/anatomia & histologia , Rutaceae/crescimento & desenvolvimento
12.
Plant Cell ; 29(10): 2644-2660, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28899981

RESUMO

Ribosome-related mutants in Arabidopsis thaliana share several notable characteristics regarding growth and development, which implies the existence of a common pathway that responds to disorders in ribosome biogenesis. As a first step to explore this pathway genetically, we screened a mutagenized population of root initiation defective2 (rid2), a temperature-sensitive mutant that is impaired in pre-rRNA processing, and isolated suppressor of root initiation defective two1 (sriw1), a suppressor mutant in which the defects of cell proliferation observed in rid2 at the restrictive temperature was markedly rescued. sriw1 was identified as a missense mutation of the NAC transcription factor gene ANAC082 The sriw1 mutation greatly alleviated the developmental abnormalities of rid2 and four other tested ribosome-related mutants, including rid3 However, the impaired pre-rRNA processing in rid2 and rid3 was not relieved by sriw1 Expression of ANAC082 was localized to regions where phenotypic effects of ribosome-related mutations are readily evident and was elevated in rid2 and rid3 compared with the wild type. These findings suggest that ANAC082 acts downstream of perturbation of biogenesis of the ribosome and may mediate a set of stress responses leading to developmental alterations and cell proliferation defects.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Ribossomos/metabolismo
13.
Front Plant Sci ; 8: 2247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375613

RESUMO

The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

14.
Biol Open ; 5(7): 942-54, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334696

RESUMO

Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

15.
J Plant Res ; 128(3): 371-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740809

RESUMO

Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Desdiferenciação Celular/genética , Organogênese Vegetal/genética , Proteínas de Plantas/genética , RNA Nuclear Pequeno/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Teste de Complementação Genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Nicotiana/genética , Fatores de Transcrição/metabolismo
16.
J Plant Res ; 128(3): 349-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725626

RESUMO

Plant cell dedifferentiation has long attracted interest as a key process for understanding the plasticity of plant development. In early studies, typical examples of plant cell dedifferentiation were described as physiological and cytological changes associated with wound healing or regenerative development. Subsequently, plant tissue and cell culture techniques, in which exciting progress was achieved after discovery of the hormonal control of cell proliferation and organogenesis in vitro in the 1950s, have been used extensively to study dedifferentiation. The pioneer studies of plant tissue/cell culture led to the hypothesis that many mature plant cells retain totipotency and related dedifferentiation to the initial step of the expression of totipotency. Plant tissue/cell cultures have provided experimental systems not only for physiological analysis, but also for genetic and molecular biological analysis, of dedifferentiation. More recently, proteomic, transcriptomic, and epigenetic analyses have been applied to the study of plant cell dedifferentiation. All of these works have expanded our knowledge of plant cell dedifferentiation, and current research is contributing to unraveling the molecular mechanisms. The present article provides a brief overview of the history of research on plant cell dedifferentiation.


Assuntos
Desdiferenciação Celular/genética , Desenvolvimento Vegetal/genética , Plantas/genética , Proteoma , Transcriptoma , Epigenômica , Proteômica
17.
Mol Plant ; 8(4): 612-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624147

RESUMO

During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Xilema/citologia , Xilema/metabolismo , Aminopiridinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Floema/citologia , Floema/genética , Floema/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Succinatos/metabolismo , Xilema/genética
18.
Mol Plant ; 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25344955

RESUMO

During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular developmen in detail. Here, we establish a novel in vitro experimental system, in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDRpro:GUS and TDRpro:YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF indicates that the key signaling TDIF- TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with the analysis using the rich Arabidopsis material resources including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

19.
Front Plant Sci ; 5: 159, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24808900

RESUMO

At an early stage of shoot regeneration from calli of Arabidopsis, pre-meristematic cell mounds develop in association with localized strong expression of CUP-SHAPED COTYLEDON (CUC) genes. Previous characterization of root initiation-defective 3 (rid3), an Arabidopsis mutant originally isolated as being temperature-sensitive for adventitious root formation, with respect to shoot regeneration implicated RID3 in the negative regulation of CUC1 expression and the restriction of cell division in pre-meristematic cell mounds. Positional cloning has identified RID3 as a WD40 repeat protein gene whose molecular function was not investigated before. Here we performed in silico analysis of RID3 and found that RID3 is orthologous to IPI3, which mediates pre-rRNA processing in Saccharomyces cerevisiae. In the rid3 mutant, rRNA precursors accumulated to a very high level in a temperature-dependent manner. This result indicates that RID3 is required for pre-rRNA processing as is IPI3. We compared rid3 with rid2, a temperature-sensitive mutant that is mutated in a putative RNA methyltransferase gene and is impaired in pre-rRNA processing, for seedling morphology, shoot regeneration, and CUC1 expression. The rid2 and rid3 seedlings shared various developmental alterations, such as a pointed-leaf phenotype, which is often observed in ribosome-related mutants. In tissue culture for the induction of shoot regeneration, both rid2 and rid3 mutations perturbed cell-mound formation and elevated CUC1 expression. Together, our findings suggest that rRNA biosynthesis may be involved in the regulation of CUC1 gene expression and pre-meristematic cell-mound formation during shoot regeneration.

20.
Plant Cell ; 25(6): 2056-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23771891

RESUMO

Pre-mRNA splicing is a critical process in gene expression in eukaryotic cells. A multitude of proteins are known to be involved in pre-mRNA splicing in plants; however, the physiological roles of only some of these have been examined. Here, we investigated the developmental roles of a pre-mRNA splicing factor by analyzing root initiation defective1-1 (rid1-1), an Arabidopsis thaliana mutant previously shown to have severe defects in hypocotyl dedifferentiation and de novo meristem formation in tissue culture under high-temperature conditions. Phenotypic analysis in planta indicated that RID1 is differentially required during development and has roles in processes such as meristem maintenance, leaf morphogenesis, and root morphogenesis. RID1 was identified as encoding a DEAH-box RNA helicase implicated in pre-mRNA splicing. Transient expression analysis using intron-containing reporter genes showed that pre-mRNA splicing efficiency was affected by the rid1 mutation, which supported the presumed function of RID1 in pre-mRNA splicing. Our results collectively suggest that robust levels of pre-mRNA splicing are critical for several specific aspects of plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases/genética , Precursores de RNA/genética , Splicing de RNA , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Helicases/classificação , RNA Helicases/metabolismo , Fatores de Processamento de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Temperatura , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...