Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(2): 2099-2104, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071898

RESUMO

Herein, we propose a method for evaluating the movement of a constituent in a multiple emulsion while maintaining its original dispersed condition. In this study, an oil-in-water-in-oil (O1/W/O2) emulsion was prepared using a two-step emulsification method with styrene as an analyte species in the inner phase (O1). The emulsion was measured using resonance-enhanced multiphoton ionization time-of-flight mass spectrometry without pretreatment such as centrifugation. From a series of obtained mass spectra, a time profile for the peak areas arising from styrene was constructed. When the emulsion was measured immediately following preparation, a time profile composed of a base, positive, and negative signals confirmed the presence of styrene in the O2, O1, and W phases, respectively. Moreover, while a small amount of styrene was present in the inner O1 phase, almost all of the styrene was found in the outer O2 phase. Furthermore, the results of the obtained time profile were converted into a box plot, and a method for the selection of the base, positive, and negative signals was tentatively determined. Then, the movement of styrene among the phases could be evaluated using the time courses of these signals; the time constant of the movement of styrene from an O1/W droplet to the O2 phase was calculated to be 0.8 h.

2.
Anal Sci ; 37(10): 1453-1457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34629360

RESUMO

The creaming behavior of an oil-in-water (O/W) emulsion was quantitatively evaluated via resonance-enhanced multiphoton ionization time-of-flight mass spectrometry. Styrene O/W emulsions were prepared with initial styrene concentrations of 1 and 4 g/L, and the height at the center of the sample was monitored. A peak area of the molecular ion of styrene was set as the signal intensity, for which a time profile was constructed from a series of mass spectra. As a result, the averaged time profiles showed that the signal intensities increased once and then decreased with the onset of creaming. In addition, in order to fit an experimentally obtained time profile, a modified fit function was proposed. Based on the fit results, the ratios of the increases and decreases in signal intensities were different between the two emulsions-higher in the case of an O/W emulsion with a higher initial oil concentration. On the other hand, the duration of the enhancement of the signal intensity with the onset of creaming was independent of the initial oil concentration. The present method offers the possibility to quantitatively evaluate the creaming behavior of an emulsion without pretreatment, and, therefore, would be useful for confirming the stability and quality assurance of emulsions.

3.
ACS Omega ; 5(48): 31289-31294, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324839

RESUMO

Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) was used to study the characteristic signal behaviors obtained from two types of emulsions: water-in-oil (W/O) and oil-in-water (O/W). All emulsions were prepared using phase inversion emulsification, i.e., a solution for an aqueous phase was added dropwise to an oil phase with constant stirring to obtain an emulsion. Toluene served as a detection component. When using REMPI-TOFMS to measure an emulsion, a time profile for the target component can be constructed by plotting peak areas for the corresponding component on a series of mass spectra. In the case of a W/O emulsion at a water volume fraction (f w) of 0.005, the concentration of toluene was instantaneously decreased due to the existence of water droplets, and therefore, several negative spikes were detected on the time profile while establishing a baseline. In the case of a W/O emulsion at f w = 0.3, negative peaks consisting of several plots appeared on the time profile because of the formation of aggregates of water droplets while the emulsion was flowed through a capillary column for sample introduction. An O/W emulsion at f w = 0.995 was analyzed following phase inversion, and positive peaks were detected due to the aggregates of many oil droplets. In this manner, the direct mass analysis of emulsions before and after phase inversion was achieved, and the resultant signal inversion was confirmed via REMPI-TOFMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...