Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1460-1474, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726173

RESUMO

The initiation of infection of host tissues by Staphylococcus aureus requires a family of staphylococcal adhesive proteins containing serine-aspartate repeat (SDR) domains, such as ClfA. The O-linked glycosylation of the long-chain SDR domain mediated by SdgB and SdgA is a key virulence factor that protects the adhesive SDR proteins against host proteolytic attack in order to promote successful tissue colonization, and has also been implicated in staphylococcal agglutination, which leads to sepsis and an immunodominant epitope for a strong antibody response. Despite the biological significance of these two glycosyltransferases involved in pathogenicity and avoidance of the host innate immune response, their structures and the molecular basis of their activity have not been investigated. This study reports the crystal structures of SdgB and SdgA from S. aureus as well as multiple structures of SdgB in complex with its substrates (for example UDP, N-acetylglucosamine or SDR peptides), products (glycosylated SDR peptides) or phosphate ions. Together with biophysical and biochemical analyses, this structural work uncovered the novel mechanism by which SdgB and SdgA carry out the glycosyl-transfer process to the long SDR region in SDR proteins. SdgB undergoes dynamic changes in its structure such as a transition from an open to a closed conformation upon ligand binding and takes diverse forms, both as a homodimer and as a heterodimer with SdgA. Overall, these findings not only elucidate the putative role of the three domains of SdgB in recognizing donor and acceptor substrates, but also provide new mechanistic insights into glycosylation of the SDR domain, which can serve as a starting point for the development of antibacterial drugs against staphylococcal infections.


Assuntos
Staphylococcus aureus , Humanos , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Conformação Proteica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Especificidade por Substrato , Fatores de Virulência/química , Fatores de Virulência/metabolismo
2.
Nat Commun ; 11(1): 458, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974386

RESUMO

Assembly of the peptidoglycan is crucial in maintaining viability of bacteria and in defining bacterial cell shapes, both of which are important for existence in the ecological niche that the organism occupies. Here, eight crystal structures for a member of the cell-shape-determining class of Campylobacter jejuni, the peptidoglycan peptidase 3 (Pgp3), are reported. Characterization of the turnover chemistry of Pgp3 reveals cell wall D,D-endopeptidase and D,D-carboxypeptidase activities. Catalysis is accompanied by large conformational changes upon peptidoglycan binding, whereby a loop regulates access to the active site. Furthermore, prior hydrolysis of the crosslinked peptide stem from the saccharide backbone of the peptidoglycan on one side is a pre-requisite for its recognition and turnover by Pgp3. These analyses reveal the noncanonical nature of the transformations at the core of the events that define the morphological shape for C. jejuni as an intestinal pathogen.


Assuntos
Campylobacter jejuni/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Cristalografia por Raios X , Endopeptidases/genética , Hidrólise , Metaloproteases/química , Modelos Moleculares , Mutação , Peptidoglicano/química , Conformação Proteica , Fatores de Virulência/química
3.
Sci Rep ; 9(1): 15798, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31659195

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 11168, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371757

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a major therapeutic target for the treatment of type 2 diabetes. However, the use of PPARγ-targeted drugs, such as rosiglitazone and pioglitazone, is limited owing to serious side effects caused by classical agonism. Using a rational drug discovery approach, we recently developed SB1495, a novel reversible covalent inhibitor of the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245, a key factor in the insulin-sensitizing effect of PPARγ-targeted drugs. In this study, we report the crystal structures of PPARγ in complex with SB1495 and its enantiomeric analogue SB1494, which rarely exhibits inhibitory activity, to visualize the mechanistic basis for their distinct activities. SB1495 occupies the Arm3 region near the Ω loop of the PPARγ ligand-binding domain, whereas its enantiomeric analogue SB1494 binds to the Arm2 region. In addition, the piperazine moiety of SB1495 directly pushes the helix H2', resulting in the stabilization of the Ω loop just behind the helix H2'. Our results may contribute to the development of a new generation of antidiabetic drugs that selectively block PPARγ phosphorylation without classical agonism.


Assuntos
Hipoglicemiantes/química , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Quinase 5 Dependente de Ciclina/metabolismo , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Ligantes , PPAR gama/agonistas , PPAR gama/química , Ligação Proteica , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia
5.
IUCrJ ; 6(Pt 2): 206-217, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867918

RESUMO

To protect viral DNA against the host bacterial restriction system, bacterio-phages utilize a special modification system - hydroxymethylation - in which dCMP hydroxymethylase (dCH) converts dCMP to 5-hydroxymethyl-dCMP (5hm-dCMP) using N5,N10-methylenetetrahydrofolate as a cofactor. Despite shared similarity with thymidylate synthase (TS), dCH catalyzes hydroxylation through an exocyclic methylene intermediate during the last step, which is different from the hydride transfer that occurs with TS. In contrast to the extensively studied TS, the hydroxymethylation mechanism of a cytosine base is not well understood due to the lack of a ternary complex structure of dCH in the presence of both its substrate and cofactor. This paper reports the crystal structure of the ternary complex of dCH from bacteriophage T4 (T4dCH) with dCMP and tetrahydrofolate at 1.9 Šresolution. The authors found key residues of T4dCH for accommodating the cofactor without a C-terminal tail, an optimized network of ordered water molecules and a hydrophobic gating mechanism for cofactor regulation. In combination with biochemical data on structure-based mutants, key residues within T4dCH and a substrate water molecule for hydroxymethylation were identified. Based on these results, a complete enzyme mechanism of dCH and signature residues that can identify dCH enzymes within the TS family have been proposed. These findings provide a fundamental basis for understanding the pyrimidine modification system.

6.
Int J Biol Macromol ; 119: 335-344, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30016658

RESUMO

Vancomycin resistance in Enterococci and its transfer to methicillin-resistant Staphylococcus aureus are challenging problems in health care institutions worldwide. High-level vancomycin resistance is conferred by acquiring either transposable elements of the VanA or VanB type. Enterococcus faecalis VanYB in the VanB-type operon is a d,d-carboxypeptidase that recognizes the peptidyl-d-Ala4-d-Ala5 extremity of peptidoglycan and hydrolyses the terminal d-Ala on the extracellular side of the cell wall, thereby increasing the level of glycopeptide antibiotics resistance. However, at the molecular level, it remains unclear how VanYB manipulates peptidoglycan peptides for vancomycin resistance. In this study, we have determined the crystal structures of E. faecalis VanYB in the d-Ala-d-Ala-bound, d-Ala-bound, and -unbound states. The interactions between VanYB and d-Ala-d-Ala observed in the crystal provide the molecular basis for the recognition of peptidoglycan substrates by VanYB. Moreover, comparisons with the related VanX and VanXY enzymes reveal distinct structural features of E. faecalis VanYB around the active-site cleft, thus shedding light on its unique substrate specificity. Our results could serve as the foundation for unravelling the molecular mechanism of vancomycin resistance and for developing novel antibiotics against the vancomycin-resistant Enterococcus species.


Assuntos
Enterococcus faecalis/química , Oligopeptídeos/química , Peptidoglicano/química , Sequência de Aminoácidos , Domínio Catalítico , Enterococcus faecalis/enzimologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Zinco/química
7.
Sci Rep ; 8(1): 31, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311579

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, insulin resistance, and inflammation. Here, we report the crystal structures of PPARγ in complex with lobeglitazone, a novel PPARγ agonist, and with rosiglitazone for comparison. The thiazolidinedione (TZD) moiety of lobeglitazone occupies the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) in ligand-binding domain as the TZD moiety of rosiglitazone does. However, the elongated p-methoxyphenol moiety of lobeglitazone interacts with the hydrophobic pocket near the alternate binding site of PPARγ. The extended interaction of lobeglitazone with the hydrophobic pocket enhances its binding affinity and could affect the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). Lobeglitazone inhibited the phosphorylation of PPARγ at Ser245 in a dose-dependent manner and exhibited a better inhibitory effect on Ser245 phosphorylation than rosiglitazone did. Our study provides new structural insights into the PPARγ regulation by TZD drugs and could be useful for the discovery of new PPARγ ligands as an anti-diabetic drug, minimizing known side effects.


Assuntos
Hipoglicemiantes/química , PPAR gama/química , Pirimidinas/química , Tiazolidinedionas/química , Animais , Sítios de Ligação , Humanos , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , PPAR gama/agonistas , Fosforilação , Ligação Proteica , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia
8.
Biochim Biophys Acta Proteins Proteom ; 1865(6): 674-681, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342850

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, type 2 diabetes mellitus, and inflammation. Many PPARγ agonists bind to the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) of the ligand-binding domain (LBD). More recently, an alternate ligand-binding site was identified in PPARγ LBD; it is located beside the Ω loop between the helices H2' and H3. We reported previously that the chirality of two optimized enantiomeric PPARγ ligands (S35 and R35) differentiates their PPARγ transcriptional activity, binding affinity, and inhibitory activity toward Cdk5 (cyclin-dependent kinase 5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). S35 is a PPARγ phosphorylation inhibitor with promising glucose uptake potential, whereas R35 behaves as a potent conventional PPARγ agonist. To provide a structural basis for understanding the differential activities of these enantiomeric ligands, we have determined crystal structures of the PPARγ LBD in complex with either S35 or R35. S35 and R35 bind to the PPARγ LBD in significantly different manners. The partial agonist S35 occupies the alternate site near the Ω loop, whereas the full agonist R35 binds entirely to the canonical LBP. Alternate site binding of S35 affects the PPARγ transactivation and the inhibitory effect on PPARγ Ser245 phosphorylation. This study provides a useful platform for the development of a new generation of PPARγ ligands as anti-diabetic drug candidates.


Assuntos
Hipoglicemiantes/farmacologia , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Hipoglicemiantes/química , Modelos Moleculares , Estrutura Molecular , PPAR gama/metabolismo , Estereoisomerismo , Tiazolidinedionas/química
9.
PLoS One ; 11(10): e0164243, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711177

RESUMO

Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides. H. pylori Csd1, Csd2, and Csd3/HdpA are M23B metallopeptidase family members and may act as d,d-endopeptidases to cleave the d-Ala4-mDAP3 peptide bond of cross-linked dimer muropeptides. Csd3 functions also as the d,d-carboxypeptidase to cleave the d-Ala4-d-Ala5 bond of the muramyl pentapeptide. To provide a basis for understanding molecular functions of Csd1 and Csd2, we have carried out their structural characterizations. We have discovered that (i) Csd2 exists in monomer-dimer equilibrium and (ii) Csd1 and Csd2 form a heterodimer. We have determined crystal structures of the Csd2121-308 homodimer and the heterodimer between Csd1125-312 and Csd2121-308. Overall structures of Csd1125-312 and Csd2121-308 monomers are similar to each other, consisting of a helical domain and a LytM domain. The helical domains of both Csd1 and Csd2 play a key role in the formation of homodimers or heterodimers. The Csd1 LytM domain contains a catalytic site with a Zn2+ ion, which is coordinated by three conserved ligands and two water molecules, whereas the Csd2 LytM domain has incomplete metal ligands and no metal ion is bound. Structural knowledge of these proteins sheds light on the events that regulate the cell wall in H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Forma Celular/fisiologia , Helicobacter pylori/metabolismo , Metaloproteases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Histidina/genética , Histidina/metabolismo , Metaloproteases/química , Metaloproteases/genética , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
10.
J Struct Biol ; 193(3): 172-180, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26772148

RESUMO

The Mycobacterium tuberculosis Rv2258c protein is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase). Here, we have determined its crystal structure in three forms: a ligand-unbound form, a binary complex with sinefungin (SFG), and a binary complex with S-adenosyl-L-homocysteine (SAH). The monomer structure of Rv2258c consists of two domains which are linked by a long α-helix. The N-terminal domain is essential for dimerization and the C-terminal domain has the Class I MTase fold. Rv2258c forms a homodimer in the crystal, with the N-terminal domains facing each other. It also exists as a homodimer in solution. A DALI structural similarity search with Rv2258c reveals that the overall structure of Rv2258c is very similar to small-molecule SAM-dependent MTases. Rv2258c interacts with the bound SFG (or SAH) in an extended conformation maintained by a network of hydrogen bonds and stacking interactions. Rv2258c has a relatively large hydrophobic cavity for binding of the methyl-accepting substrate, suggesting that bulky nonpolar molecules with aromatic rings might be targeted for methylation by Rv2258c in M. tuberculosis. However, the ligand-binding specificity and the biological role of Rv2258c remain to be elucidated due to high variability of the amino acid residues defining the substrate-binding site.


Assuntos
Cristalografia por Raios X , Hidrolases/química , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Sequência de Aminoácidos/genética , Sítios de Ligação , Ligação de Hidrogênio , Hidrolases/genética , Hidrolases/metabolismo , Ligantes , Metilação , Ligação Proteica , Estrutura Secundária de Proteína , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , Especificidade por Substrato
11.
Chem Sci ; 7(8): 5523-5529, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30034693

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-regulated transcription factor that plays crucial roles in adipogenesis, lipid metabolism, and glucose homeostasis. Several PPARγ ligands possess anti-diabetic activity and they commonly inhibit the phosphorylation of PPARγ at serine 273 (Ser273). The recently reported PPARγ ligand SR1664, which selectively blocks the phosphorylation of PPARγ without classical agonism, has potent anti-diabetic activity, indicating that the inhibition of Ser273 phosphorylation is sufficient to provoke anti-diabetic effects. In this study, we revealed the X-ray structure of PPARγ co-crystallized with SR1664 bound to the alternate binding site of PPARγ and confirmed that the alternate site binding of SR1664 blocks the phosphorylation of Ser273. Furthermore, using covalent inhibitors as chemical tools, we demonstrated that the inhibition of phosphorylation is attributed to the occupation of a specific site which is a hydrophobic region between helix 3 and ß3-ß4 at the binding pocket of PPARγ. In high-fat diet-induced obese mice, we confirmed the anti-diabetic activity of our covalent inhibitor SB1453 that was designed to bind at the specific site in PPARγ for blocking the phosphorylation of Ser273. Lastly, the target selectivity of SB1453 was demonstrated by fluorescence-based visualization of target proteins complexed with the covalent probe 11 containing a bioorthogonal functional group.

12.
J Biol Chem ; 290(41): 25103-17, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26306031

RESUMO

Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.


Assuntos
Carboxipeptidases/metabolismo , Forma Celular , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Sequência de Aminoácidos , Carboxipeptidases/química , Domínio Catalítico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Açúcares Ácidos/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(31): E4197-205, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183229

RESUMO

The deep trefoil knot architecture is unique to the SpoU and tRNA methyltransferase D (TrmD) (SPOUT) family of methyltransferases (MTases) in all three domains of life. In bacteria, TrmD catalyzes the N(1)-methylguanosine (m(1)G) modification at position 37 in transfer RNAs (tRNAs) with the (36)GG(37) sequence, using S-adenosyl-l-methionine (AdoMet) as the methyl donor. The m(1)G37-modified tRNA functions properly to prevent +1 frameshift errors on the ribosome. Here we report the crystal structure of the TrmD homodimer in complex with a substrate tRNA and an AdoMet analog. Our structural analysis revealed the mechanism by which TrmD binds the substrate tRNA in an AdoMet-dependent manner. The trefoil-knot center, which is structurally conserved among SPOUT MTases, accommodates the adenosine moiety of AdoMet by loosening/retightening of the knot. The TrmD-specific regions surrounding the trefoil knot recognize the methionine moiety of AdoMet, and thereby establish the entire TrmD structure for global interactions with tRNA and sequential and specific accommodations of G37 and G36, resulting in the synthesis of m(1)G37-tRNA.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimologia , RNA de Transferência/metabolismo , Thermotoga maritima/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Sequência de Aminoácidos , Anticódon/genética , Sequência de Bases , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Guanina/metabolismo , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , RNA de Transferência/química , RNA de Transferência/genética , S-Adenosilmetionina , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Biochim Biophys Acta ; 1854(8): 1001-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936776

RESUMO

Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate. It is the penultimate enzyme in both the mandelate pathway and the d-phenylglycine degradation pathway. The ThDP-dependent Enzyme Engineering Database (TEED) now lists more than 800 sequences annotated as BFDCs, including one from Mycobacterium smegmatis (MsBFDC). However, there is no evidence that either pathway for benzoylformate formation exists in the M. smegmatis genome. Further, sequence alignments of MsBFDC with the well characterized enzyme isolated from Pseudomonas putida (PpBFDC) indicate that there will be active site substitutions in MsBFDC likely to reduce activity with benzoylformate. Taken together these data would suggest that the annotation is unlikely to be correct. To test this hypothesis the putative MsBFDC was cloned, expressed, purified, and the X-ray structure was solved to a resolution of 2.2Å. While showing no evidence for ThDP in the active site, the structure was very similar to that of PpBFDC. A number of 2-oxo acids were tested as substrates. For MsBFDC the K(m) value for benzoylformate was ~23 mM, nearly 100-fold greater than that of PpBFDC while the k(cat) value was reduced 60-fold. These values would suggest that benzoylformate is not the physiological substrate for this enzyme, and that annotation as a 2-oxo acid decarboxylase may be more appropriate.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Glioxilatos/química , Ácidos Mandélicos/química , Mycobacterium smegmatis/enzimologia , Tiamina Pirofosfato/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glioxilatos/metabolismo , Cinética , Ácidos Mandélicos/metabolismo , Mycobacterium smegmatis/genética , Tiamina Pirofosfato/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 675-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760614

RESUMO

Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its D,D-endopeptidase activity cleaves the D-Ala(4)-mDAP(3) peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a D,D-carboxypeptidase that cleaves off the terminal D-Ala(5) from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn(2+) ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/enzimologia , Metaloproteases/química , Zinco/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Zinco/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2800-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372672

RESUMO

Helicobacter pylori infection causes a variety of gastrointestinal diseases, including peptic ulcers and gastric cancer. Its colonization of the gastric mucosa of the human stomach is a prerequisite for survival in the stomach. Colonization depends on its motility, which is facilitated by the helical shape of the bacterium. In H. pylori, cross-linking relaxation or trimming of peptidoglycan muropeptides affects the helical cell shape. Csd4 has been identified as one of the cell shape-determining peptidoglycan hydrolases in H. pylori. It is a Zn(2+)-dependent D,L-carboxypeptidase that cleaves the bond between the γ-D-Glu and the mDAP of the non-cross-linked muramyltripeptide (muramyl-L-Ala-γ-D-Glu-mDAP) of the peptidoglycan to produce the muramyldipeptide (muramyl-L-Ala-γ-D-Glu) and mDAP. Here, the crystal structure of H. pylori Csd4 (HP1075 in strain 26695) is reported in three different states: the ligand-unbound form, the substrate-bound form and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal D,L-carboxypeptidase domain with a typical carboxypeptidase fold, a central ß-barrel domain with a novel fold and a C-terminal immunoglobulin-like domain. The D,L-carboxypeptidase domain recognizes the substrate by interacting primarily with the terminal mDAP moiety of the muramyltripeptide. It undergoes a significant structural change upon binding either mDAP or the mDAP-containing muramyltripeptide. It it also shown that Csd5, another cell-shape determinant in H. pylori, is capable of interacting not only with H. pylori Csd4 but also with the dipeptide product of the reaction catalyzed by Csd4.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboxipeptidases/metabolismo , Cristalografia por Raios X , Helicobacter pylori/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
J Struct Biol ; 188(1): 22-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25220976

RESUMO

In Escherichia coli, seven genes (pstS, pstC, pstA, pstB, phoU, phoR, and phoB) are involved in sensing environmental phosphate (Pi) and controlling the expression of the Pho regulon. PhoU is a negative regulator of the Pi-signaling pathway and modulates Pi transport through Pi transporter proteins (PstS, PstC, PstA, and PstB) through the two-component system PhoR and PhoB. Inactivation of PhoY2, one of the two PhoU homologs in Mycobacterium tuberculosis, causes defects in persistence phenotypes and increased susceptibility to antibiotics and stresses. Despite the important biological role, the mechanism of PhoU function is still unknown. Here we have determined the crystal structure of PhoU from Pseudomonas aeruginosa. It exists as a dimer in the crystal, with each monomer consisting of two structurally similar three-helix bundles. Our equilibrium sedimentation measurements support the reversible monomer-dimer equilibrium model in which P. aeruginosa PhoU exists in solution predominantly as dimers, with monomers in a minor fraction, at low protein concentrations. The dissociation constant for PhoU dimerization is 3.2×10(-6)M. The overall structure of P. aeruginosa PhoU dimer resembles those of Aquifex aeolicus PhoU and Thermotoga maritima PhoU2. However, it shows distinct structural features in some loops and the dimerization pattern.


Assuntos
Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Pseudomonas aeruginosa/química , Transdução de Sinais , Fatores de Transcrição/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Fosfatos/química , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Multimerização Proteica , Regulon/genética , Fatores de Transcrição/genética
18.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1173-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195887

RESUMO

The Rv2416c gene of Mycobacterium tuberculosis (Mtb) encodes the enhanced intracellular survival (Eis) protein that enhances intracellular survival of the pathogen in host macrophages during infection. The Mtb Eis protein is released into the cytoplasm of the phagocyte during intracellular infection and modulates the host immune response. It also contributes to drug resistance by acetylating multiple amine groups of aminoglycosides. Interestingly, the nonpathogenic M. smegmatis (Msm) contains a homologous eis gene (MSMEG_3513). The overall structures of Mtb Eis and Msm Eis are highly similar to each other, reflecting the high level (58%) of amino-acid sequence identity between them. Both Mtb Eis and Msm Eis are active as aminoglycoside acetyltransferases, while only Mtb Eis functions as an N(ℇ)-acetyltransferase to acetylate Lys55 of dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase 7 (MKP-7), leading to the suppression of host immune responses. Here, the crystal structure of Msm Eis in the paromomycin-bound form is reported, revealing detailed interactions between an aminoglycoside antibiotic and Msm Eis. The crystal structure of Msm Eis in the paromomycin-bound form has been determined at 3.3 Šresolution. This work provides potentially useful information for structure-guided discovery of Eis inhibitors as a novel antituberculosis drug against drug-resistant Mtb.


Assuntos
Proteínas de Bactérias/química , Mycobacterium smegmatis/química , Paromomicina/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
19.
J Biol Chem ; 289(18): 12264-74, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24610782

RESUMO

Valosin-containing protein (VCP), also known as p97, is an AAA(+) ATPase that plays an essential role in a broad array of cellular processes including the endoplasmic reticulum-associated degradation (ERAD) pathway. Recently, ERAD-specific deubiquitinating enzymes have been reported to be physically associated with VCP, although the exact mechanism is not yet clear. Among these enzymes is ovarian tumor domain-containing protein 1 (OTU1). Here, we report the structural basis for interaction between VCP and OTU1. The crystal structure of the ubiquitin regulatory X-like (UBXL) domain of OTU1 (UBXLOTU1) complexed to the N-terminal domain of VCP (NVCP) at 1.8-Å resolution reveals that UBXLOTU1 adopts a ubiquitin-like fold and binds at the interface of two subdomains of NVCP using the (39)GYPP(42) loop of UBXLOTU1 with the two prolines in cis- and trans-configurations, respectively. A mutagenesis study shows that this loop is not only critical for the interaction with VCP but also for its role in the ERAD pathway. Negative staining EM shows that one molecule of OTU1 binds to one VCP hexamer, and isothermal titration calorimetry suggests that the two proteins bind with a KD of 0.71 µM. Analytical size exclusion chromatography and isothermal titration calorimetry demonstrates that OTU1 can bind VCP in both the presence and absence of a heterodimer formed by ubiquitin fusion degradation protein 1 and nuclear localization protein 4.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Humanos , Immunoblotting , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Proteína com Valosina
20.
Proteins ; 82(9): 2275-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677396

RESUMO

The jhp0933 gene in the plasticity region of Helicobacter pylori J99 encodes a hypothetical protein (JHP933), which may play some roles in pathogenesis. Here, we have determined the crystal structure of JHP933 at 2.17 Å. It represents the first crystal structure of the DUF1814 protein family. JHP933 consists of two domains: an N-terminal domain of the nucleotidyltransferase (NTase) fold and a C-terminal helix bundle domain. A highly positively charged surface patch exists adjacent to the putative NTP binding site. Structural similarity of JHP933 to known NTases is very remote, suggesting that it may function as a novel NTase.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Bactérias/ultraestrutura , Helicobacter pylori/enzimologia , Nucleotidiltransferases/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Helicobacter pylori/genética , Modelos Moleculares , Nucleotidiltransferases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...