Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 22(6): 1032-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21953044

RESUMO

The product ion spectra of proline-containing peptides are commonly dominated by y(n) ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y(2) ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y(2)/b(3) abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y(2)/b(3) abundance ratio decreases.


Assuntos
Aminoácidos/química , Oligopeptídeos/química , Prolina/química , Espectrometria de Massas em Tandem/métodos , Íons/química , Oxazolona/química
2.
J Phys Chem B ; 114(46): 15092-105, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20973555

RESUMO

The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.


Assuntos
Arginina/química , Gases/química , Peptídeos/química , Conformação Proteica , Prótons , Simulação por Computador , Lactamas/química , Espectrometria de Massas/métodos , Modelos Moleculares , Estrutura Molecular , Oxazolona/química , Peptídeos/genética , Peptídeos/metabolismo
3.
J Am Chem Soc ; 131(39): 14057-65, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19746933

RESUMO

The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.


Assuntos
Amidas/química , Peptídeos/química , Prótons , Arginina/química , Simulação por Computador , Gases , Íons , Modelos Moleculares , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
4.
BMC Bioinformatics ; 10 Suppl 6: S6, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19534755

RESUMO

BACKGROUND: The comparative genomic analysis of a large number of orthologous promoter regions of the chordate and plant genes from the DoOP databases shows thousands of conserved motifs. Most of these motifs differ from any known transcription factor binding site (TFBS). To identify common conserved motifs, we need a specific tool to be able to search amongst them. Since conserved motifs from the DoOP databases are linked to genes, the result of such a search can give a list of genes that are potentially regulated by the same transcription factor(s). RESULTS: We have developed a new tool called DoOPSearch http://doopsearch.abc.hu for the analysis of the conserved motifs in the promoter regions of chordate or plant genes. We used the orthologous promoters of the DoOP database to extract thousands of conserved motifs from different taxonomic groups. The advantage of this approach is that different sets of conserved motifs might be found depending on how broad the taxonomic coverage of the underlying orthologous promoter sequence collection is (consider e.g. primates vs. mammals or Brassicaceae vs. Viridiplantae). The DoOPSearch tool allows the users to search these motif collections or the promoter regions of DoOP with user supplied query sequences or any of the conserved motifs from the DoOP database. To find overrepresented gene ontologies, the gene lists obtained can be analysed further using a modified version of the GeneMerge program. CONCLUSION: We present here a comparative genomics based promoter analysis tool. Our system is based on a unique collection of conserved promoter motifs characteristic of different taxonomic groups. We offer both a command line and a web-based tool for searching in these motif collections using user specified queries. These can be either short promoter sequences or consensus sequences of known transcription factor binding sites. The GeneMerge analysis of the search results allows the user to identify statistically overrepresented Gene Ontology terms that might provide a clue on the function of the motifs and genes.


Assuntos
Cordados/genética , Biologia Computacional/métodos , Sequência Conservada/genética , Genes de Plantas , Regiões Promotoras Genéticas/genética , Software , Animais , Bases de Dados Genéticas , Genômica/métodos , Internet
5.
J Am Chem Soc ; 131(20): 7064-78, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19405533

RESUMO

Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from all-trans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side of the membrane. The mechanism of the long-distance proton transfer from the primary acceptor Asp85 to the extracellular proton release group during the O --> bR is poorly understood. Experiments suggest that this long-distance transfer could involve a transient state [O] in which the proton resides on the intermediate carrier Asp212. To assess whether the transient protonation of Asp212 participates in the deprotonation of Asp85, we performed hybrid Quantum Mechanics/Molecular Mechanics proton transfer calculations using different protein structures and with different retinal geometries and active site water molecules. The structural models were assessed by computing UV-vis excitation energies and C=O vibrational frequencies. The results indicate that a transient [O] conformer with protonated Asp212 could indeed be sampled during the long-distance proton transfer to the proton release group. Our calculations suggest that, in the starting proton transfer state O, the retinal is strongly twisted and at least three water molecules are present in the active site.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Domínio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Teoria Quântica , Retinaldeído/química , Retinaldeído/metabolismo
6.
J Am Chem Soc ; 130(52): 17774-89, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19055406

RESUMO

The gas-phase structures and fragmentation pathways of the N-terminal b and a fragments of YAGFL-NH(2), AGLFY-NH(2), GFLYA-NH(2), FLYAG-NH(2), and LYAGF-NH(2) were investigated using collision-induced dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. Our combined experimental and theoretical approach allows probing of the scrambling and rearrangement reactions that take place in CID of b and a ions. It is shown that low-energy CID of the b(5) fragments of the above peptides produces nearly the same dissociation patterns. Furthermore, CID of protonated cyclo-(YAGFL) generates the same fragments with nearly identical ion abundances when similar experimental conditions are applied. This suggests that rapid cyclization of the primarily linear b(5) ions takes place and that the CID spectrum is indeed determined by the fragmentation behavior of the cyclic isomer. This can open up at various amide bonds, and its fragmentation behavior can be understood only by assuming a multitude of fragmenting linear structures. Our computational results fully support this cyclization-reopening mechanism by showing that protonated cyclo-(YAGFL) is energetically favored over the linear b(5) isomers. Furthermore, the cyclization-reopening transition structures are energetically less demanding than those of conventional bond-breaking reactions, allowing fast interconversion among the cyclic and linear isomers. This chemistry can lead in principle to complete loss of sequence information upon CID, as documented for the b(5) ion of FLYAG-NH(2). CID of the a(5) ions of the above peptides produces fragment ion distributions that can be explained by assuming b-type scrambling of their parent population and a --> a*-type rearrangement pathways ( Vachet , R. W. , Bishop , B. M. , Erickson , B. W. , and Glish , G. L. J. Am. Chem. Soc. 1997, 119, 5481 ). While a ions easily undergo cyclization, the resulting macrocycle predominantly reopens to regenerate the original linear structure. Computational data indicate that the a --> a*-type rearrangement pathways of the linear a isomers involve post-cleavage proton-bound dimer intermediates in which the fragments reassociate and the originally C-terminal fragment is transferred to the N-terminus.


Assuntos
Oligopeptídeos/química , Sequência de Aminoácidos , Isótopos de Nitrogênio , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Prótons , Propriedades de Superfície , Espectrometria de Massas em Tandem/métodos , Termodinâmica
7.
J Phys Chem B ; 112(47): 14729-41, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18973373

RESUMO

The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.


Assuntos
Bacteriorodopsinas/química , Prótons , Água/química , Domínio Catalítico , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica
8.
BMC Bioinformatics ; 9: 369, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18783607

RESUMO

BACKGROUND: Exonic splicing enhancers (ESEs) activate nearby splice sites and promote the inclusion (vs. exclusion) of exons in which they reside, while being a binding site for SR proteins. To study the impact of ESEs on alternative splicing it would be useful to have a possibility to detect them in exons. Identifying SR protein-binding sites in human DNA sequences by machine learning techniques is a formidable task, since the exon sequences are also constrained by their functional role in coding for proteins. RESULTS: The choice of training examples needed for machine learning approaches is difficult since there are only few exact locations of human ESEs described in the literature which could be considered as positive examples. Additionally, it is unclear which sequences are suitable as negative examples. Therefore, we developed a motif-oriented data-extraction method that extracts exon sequences around experimentally or theoretically determined ESE patterns. Positive examples are restricted by heuristics based on known properties of ESEs, e.g. location in the vicinity of a splice site, whereas negative examples are taken in the same way from the middle of long exons. We show that a suitably chosen SVM using optimized sequence kernels (e.g., combined oligo kernel) can extract meaningful properties from these training examples. Once the classifier is trained, every potential ESE sequence can be passed to the SVM for verification. Using SVMs with the combined oligo kernel yields a high accuracy of about 90 percent and well interpretable parameters. CONCLUSION: The motif-oriented data-extraction method seems to produce consistent training and test data leading to good classification rates and thus allows verification of potential ESE motifs. The best results were obtained using an SVM with the combined oligo kernel, while oligo kernels with oligomers of a certain length could be used to extract relevant features.


Assuntos
Algoritmos , Inteligência Artificial , Éxons/genética , Reconhecimento Automatizado de Padrão/métodos , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Dados de Sequência Molecular
9.
J Phys Chem A ; 112(20): 4608-16, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18444632

RESUMO

The conformational structures of protonated polyalanine peptides, Ala(n)H(+), have been investigated in the gas phase for n = 3, 4, 5, and 7 using a combination of resonant-infrared multiphoton dissociation (R-IRMPD) spectroscopy in the NH and OH stretch regions and quantum chemical calculations. Agreement between theoretical IR and experimental R-IRMPD spectral features has enabled the assignment of specific hydrogen-bonded conformational motifs in the short protonated peptides and revealed their conformational evolution under elevated-temperature conditions, as a function of increasing chain length. The shortest peptide, Ala(3)H(+), adopts a mixture of extended and cyclic chain conformations, protonated, respectively, at a backbone carbonyl or the N-terminus. The longer peptides adopt folded, cyclic, and globular charge-solvated conformations protonated at the N-terminus, consistent with previous ion-mobility studies. The longest peptide, Ala(7)H(+), adopts a globular conformation with the N-terminus completely charge-solvated, demonstrating the emergence of "physiologically relevant" intramolecular interactions in the peptide backbone. The computed conformational relative free energies highlight the importance of entropic contributions in these peptides.


Assuntos
Gases/química , Peptídeos/química , Análise Espectral , Vibração , Modelos Moleculares , Conformação Proteica
10.
J Phys Chem B ; 112(16): 5189-98, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18380501

RESUMO

A density functional study of the effects of microhydration on the guanine-cytosine (GC) base pair and its anion radical is presented. Geometries of the GC base pair in the presence of 6 and 11 water molecules were fully optimized in the neutral (GC-nH2O) and anion radical [(GC-nH2O)*-] (n = 6 and 11) states using the B3LYP method and the 6-31+G** basis set. Further, vibrational frequency analysis at the same level of theory (B3LYP/6-31+G**) was also performed to ensure the existence of local minima in these hydrated structures. It was found that water molecules surrounding the GC base pair have significant effects on the geometry of the GC base pair and promote nonplanarity in the GC base pair. The calculated structures were found to be in good agreement with those observed experimentally and obtained in molecular dynamics (MD) simulation studies. The water molecules in neutral GC-nH2O complexes lie near the ring plane of the GC base pair where they undergo hydrogen bonding with both GC and each other. However, in the GC anion radical complexes (GC-nH2O, n = 6, 11), the water molecules are displaced substantially from the GC ring plane. For GC-11H2O*-, a water molecule is hydrogen-bonded with the C6 atom of the cytosine base. We found that the hydration shell initially destabilizes the GC base pair toward electron capture as a transient anion. Energetically unstable diffuse states in the hydration shell are suggested to provide an intermediate state for the excess electron before molecular reorganization of the water molecules and the base pair results in a stable anion formation. The singly occupied molecular orbital (SOMO) in the anion radical complexes clearly shows that an excess electron localizes into a pi orbital of cytosine. The zero-point-energy (ZPE-) corrected adiabatic electron affinities (AEAs) of the GC-6H2O and GC-11H2O complexes, at the B3LYP/6-31+G** level of theory, were found to be 0.74 and 0.95 eV, respectively. However, the incorporation of bulk water as a solvent using the polarized continuum model (PCM) increases the EAs of these complexes to 1.77 eV.


Assuntos
Pareamento de Bases , Citosina/química , Guanina/química , Água/química , Ânions/química , Elétrons , Radicais Livres/química , Modelos Moleculares
11.
BMC Genet ; 8: 78, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17986331

RESUMO

BACKGROUND: Transposed elements (TEs) are known to affect transcriptomes, because either new exons are generated from intronic transposed elements (this is called exonization), or the element inserts into the exon, leading to a new transcript. Several examples in the literature show that isoforms generated by an exonization are specific to a certain tissue (for example the heart muscle) or inflict a disease. Thus, exonizations can have negative effects for the transcriptome of an organism. RESULTS: As we aimed at detecting other tissue- or tumor-specific isoforms in human and mouse genomes which were generated through exonization of a transposed element, we designed the automated analysis pipeline SERpredict (SER = Specific Exonized Retroelement) making use of Bayesian Statistics. With this pipeline, we found several genes in which a transposed element formed a tissue- or tumor-specific isoform. CONCLUSION: Our results show that SERpredict produces relevant results, demonstrating the importance of transposed elements in shaping both the human and the mouse transcriptomes. The effect of transposed elements on the human transcriptome is several times higher than the effect on the mouse transcriptome, due to the contribution of the primate-specific Alu elements.


Assuntos
Elementos de DNA Transponíveis , Bases de Dados Genéticas , Éxons , Genes Neoplásicos , Isoformas de Proteínas/genética , Retroelementos , Processamento Alternativo , Elementos Alu , Animais , Etiquetas de Sequências Expressas , Biblioteca Gênica , Humanos , Camundongos , Especificidade de Órgãos
12.
J Phys Chem A ; 111(31): 7309-16, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17628045

RESUMO

How many solvent molecules are required to solvate an amino acid? This apparently simple question, which relates to the number of solvent molecules necessary to change the amino acid from its gas-phase neutral structure to the zwitterionic solvated structure, remains unanswered to date. Here we present experimental and theoretical (density functional theory: B3LYP/6-31+G**) infrared spectra for tryptophan-watern complexes where n = 1-6, which suggest that the zwitterionic structure becomes competitive in energy at the high end of the series. Compelling evidence for a gradual transition to zwitterionic structures comes from tryptophan-methanol complexes up to n = 9. Starting from n = 5, the infrared spectra show increasing intensity in the diagnostic asymmetric COO- stretch and in the weaker NH3+ bending modes as the cluster size increases. Moreover, convergence toward the Fourier transform infrared spectrum of a solution of tryptophan in methanol is clearly observed. For small solvent complexes (n = 1-4), the microsolvation by methanol and water is shown to behave very similarly. A detailed comparison of the experimental and the theoretical spectra allows us to determine both the preferred solvent binding sites on the amino acid and the evolution of conformational structures of tryptophan as the number of attached solvent molecules increases.


Assuntos
Teoria Quântica , Solventes/química , Triptofano/química , Água/química , Raios Infravermelhos , Substâncias Macromoleculares/química , Estrutura Molecular , Transição de Fase , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral
13.
J Am Chem Soc ; 129(18): 5887-97, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17428052

RESUMO

The gas-phase structures of the protonated pentapeptide Leu-enkephalin and its main collision-induced dissociation (CID) product ions, b4 and a4, are investigated by means of infrared multiple-photon dissociation (IR-MPD) spectroscopy and detailed molecular mechanics and density functional theory (DFT) calculations. Our combined experimental and theoretical approach allows accurate structural probing of the site of protonation and the rearrangement reactions that have taken place in CID. It is shown that the singly protonated Leu-enkephalin precursor is protonated on the N-terminus. The b4 fragment ion forms two types of structures: linear isomers with a C-terminal oxazolone ring, as well as cyclic peptide structures. For the former structure, two sites of proton attachment are observed, on the N-terminus and on the oxazolone ring nitrogen, as shown in a previous communication (Polfer, N. C.; Oomens, J.; Suhai, S.; Paizs, B. J. Am. Chem. Soc. 2005, 127, 17154-17155). Upon leaving the ions for longer radiative cooling delays in the ion cyclotron resonance (ICR) cell prior to IR spectroscopic investigation, one observes a gradual decrease in the relative population of oxazolone-protonated b4 and a corresponding increase in N-terminal-protonated b4. This experimentally demonstrates that the mobile proton is transferred between two sites in a gas-phase peptide ion and allows one to rationalize how the proton moves around the molecule in the dissociation process. The a4 fragment, which is predominantly formed via b4, is also confirmed to adopt two types of structures: linear imine-type structures, and cyclic structures; the former isomers are exclusively protonated on the N-terminus in sharp contrast to b4, where a mixture of protonation sites was found. The presence of cyclic b4 and a4 fragment ions is the first direct experimental proof that fully cyclic structures are formed in CID. These results suggest that their presence is significant, thus lending strong support to the recently discovered peptide fragmentation pathways (Harrison, A. G.; Young, A. B.; Bleiholder, B.; Suhai, S.; Paizs, B. J. Am. Chem. Soc. 2006, 128, 10364-10365) that result in scrambling of the amino acid sequence upon CID.


Assuntos
Encefalina Leucina/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Espectrofotometria Infravermelho/métodos , Prótons
14.
J Struct Biol ; 157(3): 454-69, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17189704

RESUMO

The transfer of a proton from the retinal Schiff base to the nearby Asp85 protein group is an essential step in the directional proton-pumping by bacteriorhodopsin. To avoid the wasteful back reprotonation of the Schiff base from Asp85, the protein must ensure that, following Schiff base deprotonation, the energy barrier for back proton-transfer from Asp85 to the Schiff base is larger than that for proton-transfer from the Schiff base to Asp85. Here, three structural elements that may contribute to suppressing the back proton-transfer from Asp85 to the Schiff base are investigated: (i) retinal twisting; (ii) hydrogen-bonding distances in the active site; and (iii) the number and location of internal water molecules. The impact of the pattern of bond twisting on the retinal deprotonation energy is dissected by performing an extensive set of quantum-mechanical calculations. Structural rearrangements in the active site, such as changes of the Thr89:Asp85 distance and relocation of water molecules hydrogen-bonding to the Asp85 acceptor group, may participate in the mechanism which ensures that following the transfer of the Schiff base proton to Asp85 the protein proceeds with the subsequent photocycle steps, and not with back proton transfer from Asp85 to the Schiff base.


Assuntos
Ácido Aspártico/química , Bacteriorodopsinas/química , Bombas de Próton/química , Prótons , Animais , Bacteriorodopsinas/metabolismo , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Conformação Proteica , Bombas de Próton/metabolismo , Retina/fisiologia , Bases de Schiff/química , Treonina/química , Água/química
15.
BMC Bioinformatics ; 7: 473, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17064411

RESUMO

BACKGROUND: The German cDNA Consortium has been cloning full length cDNAs and continued with their exploitation in protein localization experiments and cellular assays. However, the efficient use of large cDNA resources requires the development of strategies that are capable of a speedy selection of truly useful cDNAs from biological and experimental noise. To this end we have developed a new high-throughput analysis tool, CAFTAN, which simplifies these efforts and thus fills the gap between large-scale cDNA collections and their systematic annotation and application in functional genomics. RESULTS: CAFTAN is built around the mapping of cDNAs to the genome assembly, and the subsequent analysis of their genomic context. It uses sequence features like the presence and type of PolyA signals, inner and flanking repeats, the GC-content, splice site types, etc. All these features are evaluated in individual tests and classify cDNAs according to their sequence quality and likelihood to have been generated from fully processed mRNAs. Additionally, CAFTAN compares the coordinates of mapped cDNAs with the genomic coordinates of reference sets from public available resources (e.g., VEGA, ENSEMBL). This provides detailed information about overlapping exons and the structural classification of cDNAs with respect to the reference set of splice variants. The evaluation of CAFTAN showed that is able to correctly classify more than 85% of 5950 selected "known protein-coding" VEGA cDNAs as high quality multi- or single-exon. It identified as good 80.6 % of the single exon cDNAs and 85 % of the multiple exon cDNAs. The program is written in Perl and in a modular way, allowing the adoption of this strategy to other tasks like EST-annotation, or to extend it by adding new classification rules and new organism databases as they become available. We think that it is a very useful program for the annotation and research of unfinished genomes. CONCLUSION: CAFTAN is a high-throughput sequence analysis tool, which performs a fast and reliable quality prediction of cDNAs. Several thousands of cDNAs can be analyzed in a short time, giving the curator/scientist a first quick overview about the quality and the already existing annotation of a set of cDNAs. It supports the rejection of low quality cDNAs and helps in the selection of likely novel splice variants, and/or completely novel transcripts for new experiments.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , DNA Complementar/normas , Análise de Sequência de DNA/métodos , Software , DNA Complementar/genética , Genoma , Humanos , Splicing de RNA , RNA Mensageiro/genética
16.
J Am Chem Soc ; 128(32): 10364-5, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16895391

RESUMO

Collision-induced dissociation (CID) of protonated YAGFL-NH2 leads to nondirect sequence fragment ions that cannot directly be derived from the primary peptide structure. Experimental and theoretical evidence indicate that primary fragmentation of the intact peptide leads to the linear YAGFLoxa b5 ion with a C-terminal oxazolone ring that is attacked by the N-terminal amino group to induce formation of a cyclic peptide b5 isomer. The latter can undergo various proton transfer reactions and opens up to form something other than the YAGFLoxa linear b5 isomer, leading to scrambling of sequence information in the CID of protonated YAGFL-NH2.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular
17.
J Am Soc Mass Spectrom ; 17(12): 1654-64, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16934997

RESUMO

Extensive 13C, 15N, and 2H labeling of tetraglycine was used to investigate the b3+ --> a3* reaction during low-energy collision-induced dissociation (CID) in a quadrupole ion-trap mass spectrometer. The patterns observed with respect to the retention or elimination of the isotope labels demonstrate that the reaction pathway involves elimination of CO and NH3. The ammonia molecule includes 2 H atoms from amide or amino positions, and one from an alpha-carbon position. The loss of NH3 does not involve elimination of the N-terminal amino group but, instead, the N atom of the presumed oxazolone ring in the b3+ ion. The CO molecule eliminated is the carbonyl group of the same oxazolone ring, and the alpha-carbon H atom is transferred from the amino acid adjacent to the oxazolone ring. Quantum chemical calculations indicate a multistep reaction cascade involving CO loss on the b3 --> a3 pathway and loss of NH=CH2 from the a3 ion to form b2. In the postreaction complex of b2 and NH=CH2, the latter can be attacked by the N-terminal amino group of the former. The product of this attack, an isomerized a3 ion, can eliminate NH3 from its N-terminus to form a3*. Calculations suggest that the ammonia and a3* species can form various ion-molecule complexes, and NH3 can initiate relay-type mobilization of the oxazolone H atoms from alpha-carbon positions to form a new oxazolone isomer. This multiple-step reaction scheme clearly explains the isotope labeling results, including unexpected scrambling of H atoms from alpha-carbon positions.


Assuntos
Modelos Químicos , Modelos Moleculares , Oligopeptídeos/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação por Computador , Marcação por Isótopo/métodos , Conformação Molecular , Prótons
18.
J Am Soc Mass Spectrom ; 17(9): 1275-81, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16829127

RESUMO

The proton affinities (PA) of the 20 naturally occurring alpha-amino acids (AA) have been determined computationally by means of density functional theory (DFT) and high-level G2(MP2) calculations. These theoretical PAs, together with data that have appeared since 1997 in the literature, are used to validate the most reasonable currently available PA scale for AAs (Harrison, A. G. Mass Spectrom. Rev. 1997, 16, 201-217.). Significant scatter is observed for the PAs of Ser, Asp, Phe, Asn, Met, Pro, Gln, Glu, Trp, His, Lys, and Arg, many of which have a basic side-chain functionality. Critical review of the available data leads to new consensus PAs for Asn, Gln, Met, and Arg of 222.4, 230.5, 223.7, and 250.2 kcal/mol, respectively.


Assuntos
Algoritmos , Aminoácidos/química , Espectrometria de Massas/métodos , Modelos Químicos , Modelos Moleculares , Prótons , Sítios de Ligação , Simulação por Computador , Ligação Proteica
19.
J Phys Chem A ; 110(24): 7719-27, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16774220

RESUMO

Binding of clusters of gold atoms (Au) with the guanine-cytosine (GC) and adenine-thymine (AT) Watson-Crick DNA base pairs was studied using the density functional theory (DFT). Geometries of the neutral GC-Au(n) and AT-Au(n) and the corresponding anionic (GC-Au(n))(-1) and (AT-Au(n))(-1) (n = 4, 8) complexes were fully optimized in different electronic states, that is, singlet and triplet states for the neutral complexes and doublet and quartet states for the anionic complexes, using the B3LYP density functional method. The 6-31+G basis set was used for all atoms except gold. For gold atoms, the Los Alamos effective core potential (ECP) basis set LanL2DZ was employed. Vibrational frequency calculations were performed to ensure that the optimized structures corresponded to potential energy surface minima. The gold clusters around the neutral GC and AT base pairs have a T-shaped structure, which satisfactorily resemble those observed experimentally and in other theoretical studies. However, in anionic GC and AT base pairs, the gold clusters have extended zigzag and T-shaped structures. We found that guanine and adenine have high affinity for Au clusters, with their N3 and N7 sites being preferentially involved in binding with the same. The calculated adiabatic electron affinities (AEAs) of the GC-Au(n)complexes (n = 4, 8) were found to be much larger than those of the isolated base pairs.


Assuntos
Pareamento de Bases , DNA/química , Ouro/química , Modelos Químicos , Modelos Moleculares , Adenina , Composição de Bases , Citosina , Guanina , Estrutura Molecular , Conformação de Ácido Nucleico , Eletricidade Estática , Termodinâmica , Timina
20.
BMC Dev Biol ; 6: 27, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16756679

RESUMO

BACKGROUND: Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. RESULTS: To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. CONCLUSION: Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues. Meanwhile, Wnt inhibition acts later during gastrulation, and is essential for maintenance of organizer gene expression throughout gastrulation, a role which may depend on its ability to block the expression of a host of ventral, posterior, and lateral fate-specifying factors.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Genômica , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Vértebra Cervical Áxis/embriologia , Vértebra Cervical Áxis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transcrição Gênica/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...