Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929987

RESUMO

The blood-brain barrier (BBB) is a key physiological component of the central nervous system (CNS), maintaining nutrients, clearing waste, and protecting the brain from pathogens. The inherent barrier properties of the BBB pose a challenge for therapeutic drug delivery into the CNS to treat neurological diseases. Impaired BBB function has been related to neurological disease. Cerebral amyloid angiopathy (CAA), the deposition of amyloid in the cerebral vasculature leading to a compromised BBB, is a co-morbidity in most cases of Alzheimer's disease (AD), suggesting that BBB dysfunction or breakdown may be involved in neurodegeneration. Due to limited access to human BBB tissue, the mechanisms that contribute to proper BBB function and BBB degeneration remain unknown. To address these limitations, we have developed a human pluripotent stem cell-derived BBB (iBBB) by incorporating endothelial cells, pericytes, and astrocytes in a 3D matrix. The iBBB self-assembles to recapitulate the anatomy and cellular interactions present in the BBB. Seeding iBBBs with amyloid captures key aspects of CAA. Additionally, the iBBB offers a flexible platform to modulate genetic and environmental factors implicated in cerebrovascular disease and neurodegeneration, to investigate how genetics and lifestyle affect disease risk. Finally, the iBBB can be used for drug screening and medicinal chemistry studies to optimize therapeutic delivery to the CNS. In this protocol, we describe the differentiation of the three types of cells (endothelial cells, pericytes, and astrocytes) arising from human pluripotent stem cells, how to assemble the differentiated cells into the iBBB, and how to model CAA in vitro using exogenous amyloid. This model overcomes the challenge of studying live human brain tissue with a system that has both biological fidelity and experimental flexibility, and enables the interrogation of the human BBB and its role in neurodegeneration.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doença de Alzheimer/metabolismo
2.
Methods Mol Biol ; 2683: 135-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300772

RESUMO

The blood-brain barrier (BBB) is a key physiological component of the brain, protecting the brain from peripheral processes and pathogens. The BBB is a dynamic structure that is heavily involved in cerebral blood flow, angiogenesis, and other neural functions. However, the BBB also creates a challenging barrier for the entry of therapeutics into the brain, blocking more than 98% of drugs from contact with the brain. Neurovascular comorbidities are common in several neurological diseases including Alzheimer's and Parkinson's Disease, suggesting that BBB dysfunction or break down likely has a causal role in neurodegeneration. However, the mechanisms by which the human BBB is formed, maintained, and degenerated in diseases remain largely unknown due to limited access to human BBB tissue. To address these limitations, we have developed an in vitro induced human BBB (iBBB) derived from pluripotent stem cells. The iBBB model can be used for discovery of disease mechanisms, drug targets, drug screening, and medicinal chemistry studies to optimize brain penetration of central nervous system therapeutics. In this chapter, we will explain the steps to differentiate the three cellular components (endothelial cells, pericytes, and astrocytes) from induced pluripotent stem cells, and how to assemble them into the iBBB.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais , Astrócitos , Encéfalo
3.
Stem Cells ; 37(12): 1556-1566, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634414

RESUMO

Transcription factors (TFs) are potent proteins that control gene expression and can thereby drive cell fate decisions. Fluorescent reporters have been broadly knocked into endogenous TF loci to investigate the biological roles of these factors; however, the sensitivity of such analyses in human pluripotent stem cells (hPSCs) is often compromised by low TF expression levels and/or reporter silencing. Complementarily, we report an inducible and quantitative reporter platform based on the Cre-LoxP recombination system that enables robust, quantifiable, and continuous monitoring of live hPSCs and their progeny to investigate the roles of TFs during human development and disease. Stem Cells 2019;37:1556-1566.


Assuntos
Linhagem da Célula/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Células-Tronco Pluripotentes/citologia , Proteínas WT1/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Edição de Genes/métodos , Técnicas de Introdução de Genes , Marcação de Genes , Humanos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA